Sphinx Results Take Huge Time To Show (Slow Index) - performance-testing

I'm new to Sphinx, i have simple table tbl_urls with two columns (domain_id,url)
i created my index as below to get domain id and number of urls for any giving keyword
source src2
{
type = mysql
sql_host = 0.0.0.0
sql_user = spnx
sql_pass = 123
sql_db = db_spnx
sql_port = 3306 # optional, default is 3306
sql_query = select id,domain_id,url from tbl_domain_urls
sql_attr_uint = domain_id
sql_field_string = url
}
index url_tbl
{
source = src2
path =/var/lib/sphinx/data/url_tbl
}
indexer
{
mem_limit = 2047M
}
searchd
{
listen = 0.0.0.0:9312
listen = 0.0.0.0:9306:mysql41
listen = /home/charlie/sphinx-3.4.1/bin/searchd.sock:sphinx
log = /var/log/sphinx/sphinx.log
query_log = /var/log/sphinx/query.log
read_timeout = 5
max_children = 30
pid_file = /var/run/sphinx/sphinx.pid
max_filter_values = 20000
seamless_rotate = 1
preopen_indexes = 0
unlink_old = 1
workers = threads # for RT indexes to work
binlog_path = /var/lib/sphinx/data
max_batch_queries = 128
}
problem is the time taken to show results is over one min
SELECT domain_id,count(*) as url_counter
FROM ul_tbl WHERE MATCH('games')
group by domain_id limit 1000000 OPTION max_matches=1000000;show meta;
+-----------+-------+
| domain_id | url |
+-----------+-------+
| 9900 | 444 |
| 41309 | 48 |
| 62308 | 491 |
| 85798 | 401 |
| 595 | 4851 |
13545 rows in set (3 min 22.56 sec)
+---------------+--------+
| Variable_name | Value |
+---------------+--------+
| total | 13545 |
| total_found | 13545 |
| time | 1.406 |
| keyword[0] | games |
| docs[0] | 456667 |
| hits[0] | 514718 |
+---------------+--------+
table tbl_domain_urls 100,821,614 rows
dedicated server HP Proliant 2xL5420 16GB RAM 2x1TB HDD
I need your support to optimize my QUERY or config settings, i need the results in the lowest time possible, i really appreciate any new idea to test
Note:
I tried distributed index to use multiple core for processing without any noticable results

Related

Exclude Temporary Storage (D:) from KQL QUERY

I have a KQL query from disk logs from Azure Log Insights. Please let me know how to exclude a particular drive like D: or any temporary storage from this query.
InsightsMetrics
| where Name == "FreeSpaceMB"
| extend Tags = parse_json(Tags)
| extend mountId = tostring(Tags["vm.azm.ms/mountId"])
,diskSizeMB = toreal(Tags["vm.azm.ms/diskSizeMB"])
| project-rename FreeSpaceMB = Val
| summarize arg_max(TimeGenerated, diskSizeMB, FreeSpaceMB) by Computer, mountId
,FreeSpacePercentage = round(FreeSpaceMB / diskSizeMB * 100, 1)
| extend diskSizeGB = round(diskSizeMB / 1024, 1)
,FreeSpaceGB = round(FreeSpaceMB / 1024, 1)
| project TimeGenerated, Computer, mountId, diskSizeGB, FreeSpaceGB, FreeSpacePercentage
| order by Computer asc, mountId asc
You just need to do a where statement
| where mountId != "D:"
So in your query it will be
InsightsMetrics
| where Name == "FreeSpaceMB"
| extend Tags = parse_json(Tags)
| extend mountId = tostring(Tags["vm.azm.ms/mountId"])
,diskSizeMB = toreal(Tags["vm.azm.ms/diskSizeMB"])
| where mountId != "D:"
| project-rename FreeSpaceMB = Val
| summarize arg_max(TimeGenerated, diskSizeMB, FreeSpaceMB) by Computer, mountId
,FreeSpacePercentage = round(FreeSpaceMB / diskSizeMB * 100, 1)
| extend diskSizeGB = round(diskSizeMB / 1024, 1)
,FreeSpaceGB = round(FreeSpaceMB / 1024, 1)
| project TimeGenerated, Computer, mountId, diskSizeGB, FreeSpaceGB, FreeSpacePercentage
| order by Computer asc, mountId asc
And if you wanted to exclude multiple drives from the query, you can use the !in operator, will look like below
InsightsMetrics
| where Name == "FreeSpaceMB"
| extend Tags = parse_json(Tags)
| extend mountId = tostring(Tags["vm.azm.ms/mountId"])
,diskSizeMB = toreal(Tags["vm.azm.ms/diskSizeMB"])
| where mountId !in ("D:", "E:")
| project-rename FreeSpaceMB = Val
| summarize arg_max(TimeGenerated, diskSizeMB, FreeSpaceMB) by Computer, mountId
,FreeSpacePercentage = round(FreeSpaceMB / diskSizeMB * 100, 1)
| extend diskSizeGB = round(diskSizeMB / 1024, 1)
,FreeSpaceGB = round(FreeSpaceMB / 1024, 1)
| project TimeGenerated, Computer, mountId, diskSizeGB, FreeSpaceGB, FreeSpacePercentage
| order by Computer asc, mountId asc

Comparing elements from 2 list kotlin

im having 2 list of different variable, so i want to compare and update the 'Check' value from list 2 if the 'Brand' from list 2 is found in list 1
-------------------- --------------------
| Name | Brand | | Brand | Check |
-------------------- --------------------
| vga x | Asus | | MSI | X |
| vga b | Asus | | ASUS | - |
| mobo x | MSI | | KINGSTON | - |
| memory | Kingston| | SAMSUNG | - |
-------------------- --------------------
so usually i just did
for(x in list1){
for(y in list2){
if(y.brand == x.brand){
y.check == true
}
}
}
is there any simple solution for that?
Since you're mutating the objects, it doesn't really get any cleaner than what you have. It can be done using any like this, but in my opinion is not any clearer to read:
list2.forEach { bar ->
bar.check = bar.check || list1.any { it.brand == bar.brand }
}
The above is slightly more efficient than what you have since it inverts the iteration of the two lists so you don't have to check every element of list1 unless it's necessary. The same could be done with yours like this:
for(x in list2){
for(y in list1){
if(y.brand == x.brand){
x.check = true
break
}
}
}
data class Item(val name: String, val brand: String)
fun main() {
val list1 = listOf(
Item("vga_x", "Asus"),
Item("vga_b", "Asus"),
Item("mobo_x", "MSI"),
Item("memory", "Kingston")
)
val list2 = listOf(
Item("", "MSI"),
Item("", "ASUS"),
Item("", "KINGSTON"),
Item("", "SAMSUNG")
)
// Get intersections
val intersections = list1.map{it.brand}.intersect(list2.map{it.brand})
println(intersections)
// Returns => [MSI]
// Has any intersections
val intersected = list1.map{it.brand}.any { it in list2.map{it.brand} }
println(intersected)
// Returns ==> true
}
UPDATE: I just see that this isn't a solution for your problem. But I'll leave it here.

processing network packets in spark in a stateful manner

I would like to use Spark to parse network messages and group them into logical entities in a stateful manner.
Problem Description
Let's assume each message is in one row of an input dataframe, depicted below.
| row | time | raw payload |
+-------+------+---------------+
| 1 | 10 | TEXT1; |
| 2 | 20 | TEXT2;TEXT3; |
| 3 | 30 | LONG- |
| 4 | 40 | TEXT1; |
| 5 | 50 | TEXT4;TEXT5;L |
| 6 | 60 | ONG |
| 7 | 70 | -TEX |
| 8 | 80 | T2; |
The task is to parse the logical messages in the raw payload, and provide them in a new output dataframe. In the example each logical message in the payload ends with a semicolon (delimiter).
The desired output dataframe could then look as follows:
| row | time | message |
+-------+------+---------------+
| 1 | 10 | TEXT1; |
| 2 | 20 | TEXT2; |
| 3 | 20 | TEXT3; |
| 4 | 30 | LONG-TEXT1; |
| 5 | 50 | TEXT4; |
| 6 | 50 | TEXT5; |
| 7 | 50 | LONG-TEXT2; |
Note that some messages rows do not yield a new row in the result (e.g. rows 4, 6,7,8), and some yield even multiple rows (e.g. rows 2, 5)
My questions:
is this a use case for UDAF? If so, how for example should i implement the merge function? i have no idea what its purpose is.
since the message ordering matters (i cannot process LONGTEXT-1, LONGTEXT-2 properly without respecting the message order), can i tell spark to parallelize perhaps on a higer level (e.g. per calendar day of messages) but not parallelize within a day (e.g. events at time 50,60,70,80 need to be processed in order).
follow up question: is it conceivable that the solution will be usable not just in traditional spark, but also in spark structured streaming? Or does the latter require its own kind of stateful processing method?
Generally, you can run arbitrary stateful aggregations on spark streaming by using mapGroupsWithState of flatMapGroupsWithState. You can find some examples here. None of those though will guarantee that the processing of the stream will be ordered by event time.
If you need to enforce data ordering, you should try to use window operations on event time. In that case, you need to run stateless operations instead, but if the number of elements in each window group is small enough, you can use collectList for instance and then apply a UDF (where you can manage the state for each window group) on each list.
ok i figured it out in the meantime how to do this with an UDAF.
class TagParser extends UserDefinedAggregateFunction {
override def inputSchema: StructType = StructType(StructField("value", StringType) :: Nil)
override def bufferSchema: StructType = StructType(
StructField("parsed", ArrayType(StringType)) ::
StructField("rest", StringType)
:: Nil)
override def dataType: DataType = ArrayType(StringType)
override def deterministic: Boolean = true
override def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer(0) = IndexedSeq[String]()
buffer(1) = null
}
def doParse(str: String, buffer: MutableAggregationBuffer): Unit = {
buffer(0) = IndexedSeq[String]()
val prevRest = buffer(1)
var idx = -1
val strToParse = if (prevRest != null) prevRest + str else str
do {
val oldIdx = idx;
idx = strToParse.indexOf(';', oldIdx + 1)
if (idx == -1) {
buffer(1) = strToParse.substring(oldIdx + 1)
} else {
val newlyParsed = strToParse.substring(oldIdx + 1, idx)
buffer(0) = buffer(0).asInstanceOf[IndexedSeq[String]] :+ newlyParsed
buffer(1) = null
}
} while (idx != -1)
}
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
if (buffer == null) {
return
}
doParse(input.getAs[String](0), buffer)
}
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = throw new UnsupportedOperationException
override def evaluate(buffer: Row): Any = buffer(0)
}
Here a demo app the uses the above UDAF to solve the problem from above:
case class Packet(time: Int, payload: String)
object TagParserApp extends App {
val spark, sc = ... // kept out for brevity
val df = sc.parallelize(List(
Packet(10, "TEXT1;"),
Packet(20, "TEXT2;TEXT3;"),
Packet(30, "LONG-"),
Packet(40, "TEXT1;"),
Packet(50, "TEXT4;TEXT5;L"),
Packet(60, "ONG"),
Packet(70, "-TEX"),
Packet(80, "T2;")
)).toDF()
val tp = new TagParser
val window = Window.rowsBetween(Window.unboundedPreceding, Window.currentRow)
val df2 = df.withColumn("msg", tp.apply(df.col("payload")).over(window))
df2.show()
}
this yields:
+----+-------------+--------------+
|time| payload| msg|
+----+-------------+--------------+
| 10| TEXT1;| [TEXT1]|
| 20| TEXT2;TEXT3;|[TEXT2, TEXT3]|
| 30| LONG-| []|
| 40| TEXT1;| [LONG-TEXT1]|
| 50|TEXT4;TEXT5;L|[TEXT4, TEXT5]|
| 60| ONG| []|
| 70| -TEX| []|
| 80| T2;| [LONG-TEXT2]|
+----+-------------+--------------+
the main issue for me was to figure out how to actually apply this UDAF, namely using this:
df.withColumn("msg", tp.apply(df.col("payload")).over(window))
the only thing i need now to figure out are the aspects of parallelization (which i only want to happen where we do not rely on ordering) but that's a separate issue for me.

Spark out of memory with a large number of window functions (lag, lead)

I need to calculate additional features from a dataset using multiple lead's and lag's. The high number of lead's and lag's causes a out-of-memory error.
Data frame:
|----------+----------------+---------+---------+-----+---------|
| DeviceID | Timestamp | Sensor1 | Sensor2 | ... | Sensor9 |
|----------+----------------+---------+---------+-----+---------|
| | | | | | |
| Long | Unix timestamp | Double | Double | | Double |
| | | | | | |
|----------+----------------+---------+---------+-----+---------|
Window definition:
// Each window contains about 600 rows
val w = Window.partitionBy("DeviceID").orderBy("Timestamp")
Compute extra features:
var res = df
val sensors = (1 to 9).map(i => s"Sensor$i")
for (i <- 1 to 5) {
for (s <- sensors) {
res = res.withColumn(lag(s, i).over(w))
.withColumn(lead(s, i)).over(w)
}
// Compute features from all the lag's and lead's
[...]
}
System info:
RAM: 16G
JVM heap: 11G
The code gives correct results with small datasets, but gives an out-of-memory error with 10GB of input data.
I think the culprit is the high number of window functions because the DAG shows a very long sequence of
Window -> WholeStageCodeGen -> Window -> WholeStageCodeGen ...
Is there anyway to calculate the same features in a more efficient way?
For example, is it possible to get lag(Sensor1, 1), lag(Sensor2, 1), ..., lag(Sensor9, 1) without calling lag(..., 1) nine times?
If the answer to the previous question is no, then how can I avoid out-of-memory? I have already tried increasing the number of partitions.
You could try something like
res = res.select('*', lag(s"Sensor$1", 1).over(w), lag(s"Sensor$1", 2).over(w), ...)
That is, to write everything in a select instead of many withColumn
Then there will be only 1 Window in the plan. Maybe it helps with the performance.

How to add an increasing integer ID to items in a Spark DStream

I am developing a Spark Streaming application where I want to have one global numeric ID per item in my data stream. Having an interval/RDD-local ID is trivial:
dstream.transform(_.zipWithIndex).map(_.swap)
This will result in a DStream like:
// key: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 || 0 | 1 | 2 | 3 | 4 || 0
// val: a | b | c | d | e | f | g | h | i || j | k | l | m | n || o
(where the double bar || indicates the beginning of a new RDD).
What I finally want to have is:
// key: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 || 9 | 10 | 11 | 12 | 13 || 14
// val: a | b | c | d | e | f | g | h | i || j | k | l | m | n || o
How can I do that in a safe and performant way?
This seems like a trivial task, but I feel it very hard to preserve state (state = "number of items seen so far") between RDDs. Here are two approaches I tried, updating the number of seen so far (plus the number in the current interval) using updateStateByKey with a bogus key:
val intervalItemCounts = inputStream.count().map((1, _))
// intervalItemCounts looks like:
// K: 1 || 1 || 1
// V: 9 || 5 || 1
val updateCountState: (Seq[Long], Option[ItemCount]) => Option[ItemCount] =
(itemCounts, maybePreviousState) => {
val previousState = maybePreviousState.getOrElse((0L, 0L))
val previousItemCount = previousState._2
Some((previousItemCount, previousItemCount + itemCounts.head))
}
val totalNumSeenItems: DStream[ItemCount] = intervalItemCounts.
updateStateByKey(updateCountState).map(_._2)
// totalNumSeenItems looks like:
// V: (0,9) || (9,14) || (14,15)
// The first approach uses a cartesian product with the
// 1-element state DStream. (Is this performant?)
val increaseRDDIndex1: (RDD[(Long, Char)], RDD[ItemCount]) =>
RDD[(Long, Char)] =
(streamData, totalCount) => {
val product = streamData.cartesian(totalCount)
product.map(dataAndOffset => {
val ((localIndex: Long, data: Char),
(offset: Long, _)) = dataAndOffset
(localIndex + offset, data)
})
}
val globallyIndexedItems1: DStream[(Long, Char)] = inputStream.
transformWith(totalNumSeenItems, increaseRDDIndex1)
// The second approach uses a take() output operation on the
// 1-element state DStream beforehand. (Is this valid?? Will
// the closure be serialized and shipped in every interval?)
val increaseRDDIndex2: (RDD[(Long, Char)], RDD[ItemCount]) =>
RDD[(Long, Char)] = (streamData, totalCount) => {
val offset = totalCount.take(1).head._1
streamData.map(keyValue => (keyValue._1 + offset, keyValue._2))
}
val globallyIndexedItems2: DStream[(Long, Char)] = inputStream.
transformWith(totalNumSeenItems, increaseRDDIndex2)
Both approaches give the correct result (with local[*] master), but I am wondering about performance (shuffle etc.), whether it works in a truly distributed environment and whether it shouldn't be a lot easier than that...

Resources