In pytorch torchscript, how to define mutiple entry point - pytorch

Have a torch model as follow :
MyModel
update(self) : Update some params.
predict(self,X) : Predict with some input tensor.
When exporting to torchscript, is there a way to have 2 entry points:
One for update()
One for predict()

Related

MultiOutput Classification with TensorFlow Extended (TFX)

I'm quite new to TFX (TensorFlow Extended), and have been going through the sample tutorial on the TensorFlow portal to understand a bit more to apply it to my dataset.
In my scenario, instead of predicting a single label, the problem at hand requires me to predict 2 outputs (category 1, category 2).
I've done this using pure TensorFlow Keras Functional API and that works fine, but then am now looking to see if that can be fitted into the TFX pipeline.
Where i get the error, is at the Trainer stage of the pipeline, and where it throws the error is in the _input_fn, and i suspect it's because i'm not correctly splitting out the given data into (features, labels) tensor pair in the pipeline.
Scenario:
Each row of the input data comes in the form of
[Col1, Col2, Col3, ClassificationA, ClassificationB]
ClassificationA and ClassificationB are the categorical labels which i'm trying to predict using the Keras Functional Model
The output layer of the keras functional model looks like below, where there's 2 outputs that is joined to a single dense layer (Note: _xf appended to the end is just to illustrate that i've encoded the classes to int representations)
output_1 = tf.keras.layers.Dense(
TargetA_Class, activation='sigmoid',
name = 'ClassificationA_xf')(dense)
output_2 = tf.keras.layers.Dense(
TargetB_Class, activation='sigmoid',
name = 'ClassificationB_xf')(dense)
model = tf.keras.Model(inputs = inputs,
outputs = [output_1, output_2])
In the trainer module file, i've imported the required packages at the start of the module file >
import tensorflow_transform as tft
from tfx.components.tuner.component import TunerFnResult
import tensorflow as tf
from typing import List, Text
from tfx.components.trainer.executor import TrainerFnArgs
from tfx.components.trainer.fn_args_utils import DataAccessor, FnArgs
from tfx_bsl.tfxio import dataset_options
The current input_fn in the trainer module file looks like the below (by following the tutorial)
def _input_fn(file_pattern: List[Text],
data_accessor: DataAccessor,
tf_transform_output: tft.TFTransformOutput,
batch_size: int = 200) -> tf.data.Dataset:
"""Helper function that Generates features and label dataset for tuning/training.
Args:
file_pattern: List of paths or patterns of input tfrecord files.
data_accessor: DataAccessor for converting input to RecordBatch.
tf_transform_output: A TFTransformOutput.
batch_size: representing the number of consecutive elements of returned
dataset to combine in a single batch
Returns:
A dataset that contains (features, indices) tuple where features is a
dictionary of Tensors, and indices is a single Tensor of label indices.
"""
return data_accessor.tf_dataset_factory(
file_pattern,
dataset_options.TensorFlowDatasetOptions(
batch_size=batch_size,
#label_key=[_transformed_name(x) for x in _CATEGORICAL_LABEL_KEYS]),
label_key=_transformed_name(_CATEGORICAL_LABEL_KEYS[0]), _transformed_name(_CATEGORICAL_LABEL_KEYS[1])),
tf_transform_output.transformed_metadata.schema)
When i run the trainer component the error that comes up is:
label_key=_transformed_name(_CATEGORICAL_LABEL_KEYS[0]),transformed_name(_CATEGORICAL_LABEL_KEYS1)),
^ SyntaxError: positional argument follows keyword argument
I've also tried label_key=[_transformed_name(x) for x in _CATEGORICAL_LABEL_KEYS]) which also gives an error.
However, if i just pass in a single label key, label_key=transformed_name(_CATEGORICAL_LABEL_KEYS[0]) then it works fine.
FYI - _CATEGORICAL_LABEL_KEYS is nothing but a list which contains the names of the 2 outputs i'm trying to predict (ClassificationA, ClassificationB).
transformed_name is nothing but a function to return an updated name/key for the transformed data:
def transformed_name(key):
return key + '_xf'
Question:
From what i can see, the label_key argument for dataset_options.TensorFlowDatasetOptions can only accept a single string/name of label, which means it may not be able to output the dataset with multi labels.
Is there a way which i can modify the _input_fn so that i can get the dataset that's returned by _input_fn to work with returning the 2 output labels? So the tensor that's returned looks something like:
Feature_Tensor: {Col1_xf: Col1_transformedfeature_values, Col2_xf:
Col2_transformedfeature_values, Col3_xf:
Col3_transformedfeature_values}
Label_Tensor: {ClassificationA_xf: ClassA_encodedlabels,
ClassificationB_xf: ClassB_encodedlabels}
Would appreciate advice from the wider community of tfx!
Since the label key is optional, maybe instead of specifying it in the TensorflowDatasetOptions, instead you can use dataset.map afterwards and pass both labels after taking them from your dataset.
Haven't tested it but something like:
def _data_augmentation(feature_dict):
features = feature_dict[_transformed_name(x) for x in
_CATEGORICAL_FEATURE_KEYS]]
keys=[_transformed_name(x) for x in _CATEGORICAL_LABEL_KEYS]
return features, keys
def _input_fn(file_pattern: List[Text],
data_accessor: DataAccessor,
tf_transform_output: tft.TFTransformOutput,
batch_size: int = 200) -> tf.data.Dataset:
"""Helper function that Generates features and label dataset for tuning/training.
Args:
file_pattern: List of paths or patterns of input tfrecord files.
data_accessor: DataAccessor for converting input to RecordBatch.
tf_transform_output: A TFTransformOutput.
batch_size: representing the number of consecutive elements of returned
dataset to combine in a single batch
Returns:
A dataset that contains (features, indices) tuple where features is a
dictionary of Tensors, and indices is a single Tensor of label indices.
"""
dataset = data_accessor.tf_dataset_factory(
file_pattern,
dataset_options.TensorFlowDatasetOptions(
batch_size=batch_size,
tf_transform_output.transformed_metadata.schema)
dataset = dataset.map(_data_augmentation)
return dataset

Using Keras like TensorFlow for gpu computing

I would like to know if Keras can be used as an interface to TensoFlow for only doing computation on my GPU.
I tested TF directly on my GPU. But for ML purposes, I started using Keras, including the backend. I would find it 'comfortable' to do all my stuff in Keras instead of Using two tools.
This is also a matter of curiosity.
I found some examples like this one:
http://christopher5106.github.io/deep/learning/2018/10/28/understand-batch-matrix-multiplication.html
However this example does not actually do the calculation.
It also does not get input data.
I duplicate the snippet here:
'''
from keras import backend as K
a = K.ones((3,4))
b = K.ones((4,5))
c = K.dot(a, b)
print(c.shape)
'''
I would simply like to know if I can get the result numbers from this snippet above, and how?
Thanks,
Michel
Keras doesn't have an eager mode like Tensorflow, and it depends on models or functions with "placeholders" to receive and output data.
So, it's a little more complicated than Tensorflow to do basic calculations like this.
So, the most user friendly solution would be creating a dummy model with one Lambda layer. (And be careful with the first dimension that Keras will insist to understand as a batch dimension and require that input and output have the same batch size)
def your_function_here(inputs):
#if you have more than one tensor for the inputs, it's a list:
input1, input2, input3 = inputs
#if you don't have a batch, you should probably have a first dimension = 1 and get
input1 = input1[0]
#do your calculations here
#if you used the batch_size=1 workaround as above, add this dimension again:
output = K.expand_dims(output,0)
return output
Create your model:
inputs = Input(input_shape)
#maybe inputs2 ....
outputs = Lambda(your_function_here)(list_of_inputs)
#maybe outputs2
model = Model(inputs, outputs)
And use it to predict the result:
print(model.predict(input_data))

How to learn the embeddings in Pytorch and retrieve it later

I am building a recommendation system where I predict the best item for each user given their purchase history of items. I have userIDs and itemIDs and how much itemID was purchased by userID. I have Millions of users and thousands of products. Not all products are purchased(there are some products that no one has bought them yet). Since the users and items are big I don't want to use one-hot vectors. I am using pytorch and I want to create and train the embeddings so that I can make the predictions for each user-item pair. I followed this tutorial https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html. If it's an accurate assumption that the embedding layer is being trained, then do I retrieve the learned weights through model.parameters() method or should I use the embedding.data.weight option?
model.parameters() returns all the parameters of your model, including the embeddings.
So all these parameters of your model are handed over to the optimizer (line below) and will be trained later when calling optimizer.step() - so yes your embeddings are trained along with all other parameters of the network.(you can also freeze certain layers by setting i.e. embedding.weight.requires_grad = False, but this is not the case here).
# summing it up:
# this line specifies which parameters are trained with the optimizer
# model.parameters() just returns all parameters
# embedding class weights are also parameters and will thus be trained
optimizer = optim.SGD(model.parameters(), lr=0.001)
You can see that your embedding weights are also of type Parameter by doing so:
import torch
embedding_maxtrix = torch.nn.Embedding(10, 10)
print(type(embedding_maxtrix.weight))
This will output the type of the weights, which is Parameter:
<class 'torch.nn.parameter.Parameter'>
I'm not entirely sure what mean by retrieve. Do you mean getting a single vector, or do you want just the whole matrix to save it, or do something else?
embedding_maxtrix = torch.nn.Embedding(5, 5)
# this will get you a single embedding vector
print('Getting a single vector:\n', embedding_maxtrix(torch.LongTensor([0])))
# of course you can do the same for a seqeunce
print('Getting vectors for a sequence:\n', embedding_maxtrix(torch.LongTensor([1, 2, 3])))
# this will give the the whole embedding matrix
print('Getting weights:\n', embedding_maxtrix.weight.data)
Output:
Getting a single vector:
tensor([[-0.0144, -0.6245, 1.3611, -1.0753, 0.5020]], grad_fn=<EmbeddingBackward>)
Getting vectors for a sequence:
tensor([[ 0.9277, -0.1879, -1.4999, 0.2895, 0.8367],
[-0.1167, -2.2139, 1.6918, -0.3483, 0.3508],
[ 2.3763, -1.3408, -0.9531, 2.2081, -1.5502]],
grad_fn=<EmbeddingBackward>)
Getting weights:
tensor([[-0.0144, -0.6245, 1.3611, -1.0753, 0.5020],
[ 0.9277, -0.1879, -1.4999, 0.2895, 0.8367],
[-0.1167, -2.2139, 1.6918, -0.3483, 0.3508],
[ 2.3763, -1.3408, -0.9531, 2.2081, -1.5502],
[-0.5829, -0.1918, -0.8079, 0.6922, -0.2627]])
I hope this answers your question, you can also take a look at the documentation, there you can find some useful examples as well.
https://pytorch.org/docs/stable/nn.html#torch.nn.Embedding

How to combine 2 different models and call them at once in python 3?

I have created 2 different models using tensorflow and keras for image classification. Now I want to merge both the models and use both the models at the same time.
I am trying to send 1 video to each model and convert them to frames at 30 FPS. Then I want to check, say frame x from 1st model and frame x1 in 2nd model and then keep a simple if else statement like
if(frame x ==true && frame x1 == true)
print y
else
print z
So here I am getting the frames and all the information I need. But my only question is how shall I merge the two models. I want to merge them because I want frame x and frame x1 both at t seconds, thus helping me know both the image at take at same time.
it is explained nicely here. in short you need to define a function for initializing each model in its own unique variable scope that you use for both the pretraining and testing
something like
def create_model(session, FLAGS, forward_only, name):
with tf.variable_scope(name):
model = seq2seq_model.Seq2SeqModel(
FLAGS.en_vocab_size, FLAGS.fr_vocab_size, _buckets,
FLAGS.size, FLAGS.num_layers, FLAGS.max_gradient_norm, FLAGS.batch_size,
FLAGS.learning_rate, FLAGS.learning_rate_decay_factor, forward_only=forward_only)
ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
session.run(tf.initialize_all_variables())
return model
Assuming both models are in Keras, you can simply load them both at the start of your program with something like
model = load_model('my_model.h5')
taken from the Keras FAQ "How can I save a Keras model?".
So then you do
model1 = load_model( 'my_model1.h5' )
model2 = load_model( 'my_model2.h5' )
and then you can call predict on them separately and use the results.

How to use hidden layer activations to construct loss function and provide y_true during fitting in Keras?

Assume I have a model like this. M1 and M2 are two layers linking left and right sides of the model.
The example model: Red lines indicate backprop directions
During training, I hope M1 can learn a mapping from L2_left activation to L2_right activation. Similarly, M2 can learn a mapping from L3_right activation to L3_left activation.
The model also needs to learn the relationship between two inputs and the output.
Therefore, I should have three loss functions for M1, M2, and L3_left respectively.
I probably can use:
model.compile(optimizer='rmsprop',
loss={'M1': 'mean_squared_error',
'M2': 'mean_squared_error',
'L3_left': mean_squared_error'})
But during training, we need to provide y_true, for example:
model.fit([input_1,input_2], y_true)
In this case, the y_true is the hidden layer activations and not from a dataset.
Is it possible to build this model and train it using it's hidden layer activations?
If you have only one output, you must have only one loss function.
If you want three loss functions, you must have three outputs, and, of course, three Y vectors for training.
If you want loss functions in the middle of the model, you must take outputs from those layers.
Creating the graph of your model: (if the model is already defined, see the end of this answer)
#Here, all "SomeLayer(blabla)" could be replaced by a "SomeModel" if necessary
#Example of using a layer or a model:
#M1 = SomeLayer(blablabla)(L12)
#M1 = SomeModel(L12)
from keras.models import Model
from keras.layers import *
inLef = Input((shape1))
inRig = Input((shape2))
L1Lef = SomeLayer(blabla)(inLef)
L2Lef = SomeLayer(blabla)(L1Lef)
M1 = SomeLayer(blablaa)(L2Lef) #this is an output
L1Rig = SomeLayer(balbla)(inRig)
conc2Rig = Concatenate(axis=?)([L1Rig,M1]) #Or Add, or Multiply, however you're joining the models
L2Rig = SomeLayer(nlanlab)(conc2Rig)
L3Rig = SomeLayer(najaljd)(L2Rig)
M2 = SomeLayer(babkaa)(L3Rig) #this is an output
conc3Lef = Concatenate(axis=?)([L2Lef,M2])
L3Lef = SomeLayer(blabla)(conc3Lef) #this is an output
Creating your model with three outputs:
Now you've got your graph ready and you know what the outputs are, you create the model:
model = Model([inLef,inRig], [M1,M2,L3Lef])
model.compile(loss='mse', optimizer='rmsprop')
If you want different losses for each output, then you create a list:
#example of custom loss function, if necessary
def lossM1(yTrue,yPred):
return keras.backend.sum(keras.backend.abs(yTrue-yPred))
#compiling with three different loss functions
model.compile(loss = [lossM1, 'mse','binary_crossentropy'], optimizer =??)
But you've got to have three different yTraining too, for training with:
model.fit([input_1,input_2], [yTrainM1,yTrainM2,y_true], ....)
If your model is already defined and you don't create it's graph like I did:
Then, you have to find in yourModel.layers[i] which ones are M1 and M2, so you create a new model like this:
M1 = yourModel.layers[indexForM1].output
M2 = yourModel.layers[indexForM2].output
newModel = Model([inLef,inRig], [M1,M2,yourModel.output])
If you want that two outputs be equal:
In this case, just subtract the two outputs in a lambda layer, and make that lambda layer be an output of your model, with expected values = 0.
Using the exact same vars as before, we'll just create two addictional layers to subtract outputs:
diffM1L1Rig = Lambda(lambda x: x[0] - x[1])([L1Rig,M1])
diffM2L2Lef = Lambda(lambda x: x[0] - x[1])([L2Lef,M2])
Now your model should be:
newModel = Model([inLef,inRig],[diffM1L1Rig,diffM2L2lef,L3Lef])
And training will expect those two differences to be zero:
yM1 = np.zeros((shapeOfM1Output))
yM2 = np.zeros((shapeOfM2Output))
newModel.fit([input_1,input_2], [yM1,yM2,t_true], ...)
Trying to answer to the last part: how to make gradients only affect one side of the model.
...well.... at first that sounds unfeasible to me. But, if that is similar to "train only a part of the model", then it's totally ok by defining models that only go to a certain point and making part of the layers untrainable.
By doing that, nothing will affect those layers. If that's what you want, then you can do it:
#using the previous vars to define other models
modelM1 = Model([inLef,inRig],diffM1L1Rig)
This model above ends in diffM1L1Rig. Before compiling, you must set L2Right untrainable:
modelM1.layers[??].trainable = False
#to find which layer is the right one, you may define then using the "name" parameter, or see in the modelM1.summary() the shapes, types etc.
modelM1.compile(.....)
modelM1.fit([input_1, input_2], yM1)
This suggestion makes you train only a single part of the model. You can repeat the procedure for M2, locking the layers you need before compiling.
You can also define a full model taking all layers, and lock only the ones you want. But you won't be able (I think) to make half gradients pass by one side and half the gradients pass by the other side.
So I suggest you keep three models, the fullModel, the modelM1, and the modelM2, and you cycle them in training. One epoch each, maybe....
That should be tested....

Resources