How do I concatenate multiple xlsx files with the same sheet_names. For example,
I have 3 xlsx files, Rob_schedule.xlsx, Mike_schdule.xlsx and Jerome_schedule.xlsx.
Each file has the following sheet/tab names : home, office & school.
The code below generates the 3 xlsx files ( you can copy + paste and run to generate the excel files)
##############################Generating the data for Rob_schedule.xlsx########################
import pandas as pd
import numpy as np
df= {
'Date':[10232020,10242020,10252020,10262020],
'Class':['AP_Bio','AP_Chem','Physics','History'],
'Period':[3,1,2,4]}
school = pd.DataFrame(df,columns = ['Date','Class','Period'])
school
df2= {
'Date':[10232020,10242020,10252020,10262020],
'Meeting':['MQ1','MQ6','MQ2','MQ8'],
'Lunch':[1,1,1,3],
'code':['java','python','C','C++']}
office = pd.DataFrame(df2,columns = ['Date','Meeting','Lunch','code'])
office
df3= {
'cooking':['C','B','D','B'],
'Laundry':['color','white','White','color'],
'cleaning':['balcony','garage','restroom','bathroom']}
home = pd.DataFrame(df3,columns = ['cooking','Laundry','cleaning'])
home
import pandas as pd
#initialze the excel writer
writer = pd.ExcelWriter('Rob_schedule.xlsx', engine='xlsxwriter')
#store your dataframes in a dict, where the key is the sheet name you want
frames = {'home':home, 'office':office,
'school':school}
#now loop thru and put each on a specific sheet
for sheet, frame in frames.items():
frame.to_excel(writer, sheet_name = sheet,index = False)
#critical last step
writer.save()
################################ generating Mike_schedule.xlsx###################################
import pandas as pd
import numpy as np
df= {
'Date':[10232020,10242020,10252020,10262020],
'Class':['AP_Bio','AP_Chem','Physics','History'],
'Period':[3,1,2,4]}
school = pd.DataFrame(df,columns = ['Date','Class','Period'])
school
df2= {
'Date':[10232020,10242020,10252020,10262020],
'Meeting':['MQ1','MQ2','MQ4','MQ5'],
'Lunch':[1,1,1,3],
'code':['javascript','R','C','C++']}
office = pd.DataFrame(df2,columns = ['Date','Meeting','Lunch','code'])
office
df3= {
'cooking':['A','B','D','B'],
'Laundry':['color','white','white','color'],
'cleaning':['patio','garage','living_room','bathroom']}
home = pd.DataFrame(df3,columns = ['cooking','Laundry','cleaning'])
home
#initialze the excel writer
writer = pd.ExcelWriter('Mike_schedule.xlsx', engine='xlsxwriter')
#store your dataframes in a dict, where the key is the sheet name you want
frames = {'home':home, 'office':office,
'school':school}
#now loop thru and put each on a specific sheet
for sheet, frame in frames.items(): # .use .items for python 3.X
frame.to_excel(writer, sheet_name = sheet,index = False)
#critical last step
writer.save()
######################### Generate Jerome schedule###########################################
df= {
'Date':[10232020,10242020,10252020,10262020],
'Class':['French','Math','Physics','History'],
'Period':[3,1,2,4]}
school = pd.DataFrame(df,columns = ['Date','Class','Period'])
school
df2= {
'Date':[10232020,10242020,10252020,10262020],
'Meeting':['MQ1','MQ2','MQ4','MQ5'],
'Lunch':[1,1,1,3],
'code':['javascript','python','R','C++']}
office = pd.DataFrame(df2,columns = ['Date','Meeting','Lunch','code'])
office
df3= {
'cooking':['X','B','D','C'],
'Laundry':['color','white','white','color'],
'cleaning':['patio','garage','living_room','bathroom']}
home = pd.DataFrame(df3,columns = ['cooking','Laundry','cleaning'])
home
import pandas as pd
#initialze the excel writer
writer = pd.ExcelWriter('Jerome_schedule.xlsx', engine='xlsxwriter')
#store your dataframes in a dict, where the key is the sheet name you want
frames = {'home':home, 'office':office,
'school':school}
#now loop thru and put each on a specific sheet
for sheet, frame in frames.items(): # .use .items for python 3.X
frame.to_excel(writer, sheet_name = sheet,index = False)
#critical last step
writer.save()
I want to
concatenate the corresponding sheets/tabs :home, office, and school for Rob_schedule.xlsx,Mike_schedule.xlsx & Jerome_schedule.xlsx
export the concatenated dataframes as family_schedule.xlsx with home, office and school tabs
My attempt:
# This code concatenates all the tabs into one tab, but what I want is to concatenate all by their corresponding sheet/tab names
import pandas as pd
path = os.chdir(r'mypath\\')
files = os.listdir(path)
files
# pull files with `.xlsx` extension
excel_files = [file for file in files if '.xlsx' in file]
excel_files
def create_df_from_excel(file_name):
file = pd.ExcelFile(file_name)
names = file.sheet_names
return pd.concat([file.parse(name) for name in names])
df = pd.concat(
[create_df_from_excel(xl) for xl in excel_files]
)
# save the data frame
writer = pd.ExcelWriter('family_reschedule.xlsx')
df.to_excel(writer, '')
writer.save()
I would iterate over each file, and then over each worksheet, adding each sheet to a different list based on the sheet name.
Then you'll have a structure like...
{
'sheet1': [df_file1_sheet1, df_file2_sheet1, df_file3_sheet1],
'sheet2': [df_file1_sheet2, df_file2_sheet2, df_file3_sheet2],
'sheet3': [df_file1_sheet3, df_file2_sheet3, df_file3_sheet3],
}
Then concatenate each list in to a single dataframe, them write the three dataframes to an excel file.
# This part is just your own code, I've added it here because you
# couldn't figure out where `excel_files` came from
#################################################################
import os
import pandas as pd
path = os.chdir(r'mypath\\')
files = os.listdir(path)
files
# pull files with `.xlsx` extension
excel_files = [file for file in files if '.xlsx' in file]
excel_files
# This part is my actual answer
###############################
from collections import defaultdict
worksheet_lists = defaultdict(list)
for file_name in excel_files:
workbook = pd.ExcelFile(file_name)
for sheet_name in workbook.sheet_names:
worksheet = workbook.parse(sheet_name)
worksheet['source'] = file_name
worksheet_lists[sheet_name].append(worksheet)
worksheets = {
sheet_name: pd.concat(sheet_list)
for (sheet_name, sheet_list)
in worksheet_lists.items()
}
writer = pd.ExcelWriter('family_reschedule.xlsx')
for sheet_name, df in worksheets.items():
df.to_excel(writer, sheet_name=sheet_name, index=False)
writer.save()
Consider building a list of concatenated data frames with list/dict comprehensions by running an outer iteration across sheet names and inner iteration across workbooks:
import pandas as pd
path = "/path/to/workbooks"
workbooks = [f for f in os.listdir(path) if f.endswith(".xlsx")]
sheets = ["home", "office", "school"]
df_dicts = {
sh: pd.concat(
[pd.read_excel(os.path.join(path, wb), sheet_name=sh)
for wb in workbooks]
)
for sh in sheets
}
Then, export to single file:
with pd.ExcelWriter('family_reschedule.xlsx') as writer:
for sh, df in df_dict.items():
df.to_excel(writer, sheet_name=sh, index=False)
writer.save()
I have extracted data from different excel sheets spread in different folders, I have organized the folders numerically from 2015 to 2019 and each folder has twelve subfolders (from 1 to 12) here's my code:
import os
from os import walk
import pandas as pd
path = r'C:\Users\Sarah\Desktop\IOMTest'
my_files = []
for (dirpath, dirnames, filenames) in walk(path):
my_files.extend([os.path.join(dirpath, fname) for fname in filenames])
all_sheets = []
for file_name in my_files:
#Display sheets names using pandas
pd.set_option('display.width',300)
mosul_file = file_name
xl = pd.ExcelFile(mosul_file)
mosul_df = xl.parse(0, header=[1], index_col=[0,1,2])
#Read Excel and Select columns
mosul_file = pd.read_excel(file_name, sheet_name = 0 ,
index_clo=None, na_values= ['NA'], usecols = "A, E, G, H , L , M" )
#Remove NaN values
data_mosul_df = mosul_file.apply (pd.to_numeric, errors='coerce')
data_mosul_df = mosul_file.dropna()
print(data_mosul_df)
then I saved the extracted columns in a csv file
def save_frames(frames, output_path):
for frame in frames:
frame.to_csv(output_path, mode='a+', header=False)
if __name__ == '__main__':
frames =[pd.DataFrame(data_mosul_df)]
save_frames(frames, r'C:\Users\Sarah\Desktop\tt\c.csv')
My problem is that when I open the csv file it seems that it doesn't store all the data but only the last excel sheet that it has read or sometimes the two last excel sheets. however, when I print my data inside the console (in Spyder) I see that all the data are treated
data_mosul_df = mosul_file.apply (pd.to_numeric, errors='coerce')
data_mosul_df = mosul_file.dropna()
print(data_mosul_df)
the picture below shows the output csv created. I am wondering if it is because from Column A to Column E the information are the same ? so that's why it overwrite ?
I would like to know how to modify the code so that it extract and store the data chronologically from folders (2015 to 2019) taking into accout subfolders (from 1 to 12) in each folder and how to create a csv that stores all the data ? thank you
Rewrite your loop:
for file_name in my_files:
#Display sheets names using pandas
pd.set_option('display.width',300)
mosul_file = file_name
xl = pd.ExcelFile(mosul_file)
mosul_df = xl.parse(0, header=[1], index_col=[0,1,2])
#Read Excel and Select columns
mosul_file = pd.read_excel(file_name, sheet_name = 0 ,
index_clo=None, na_values= ['NA'], usecols = "A, E, G, H , L , M" )
#Remove NaN values
data_mosul_df = mosul_file.apply (pd.to_numeric, errors='coerce')
data_mosul_df = mosul_file.dropna()
#Make a list of df's
all_sheets.append(data_mosul_df)
Rewrite your save_frames:
def save_frames(frames, output_path):
frames.to_csv(output_path, mode='a+', header=False)
Rewrite your main:
if __name__ == '__main__':
frames = pd.concat(all_sheets)
save_frames(frames, r'C:\Users\Sarah\Desktop\tt\c.csv')
I am trying to import certain columns of data from several different sheets inside of a workbook. However, while appending it only seems to append 'q2 survey' to a new workbook. How do I get this to append properly?
import sys, os
import pandas as pd
import xlrd
import xlwt
b = ['q1 survey', 'q2 survey','q3 survey'] #Sheet Names
df_t = pd.DataFrame(columns=["Month","Date", "Year"]) #column Name
xls = "path_to_file/R.xls"
sheet=[]
df_b=pd.DataFrame()
pd.read_excel(xls,sheet)
for sheet in b:
df=pd.read_excel(xls,sheet)
df.rename(columns=lambda x: x.strip().upper(), inplace=True)
bill=df_b.append(df[df_t])
bill.to_excel('Survey.xlsx', index=False)
I think if you do:
b = ['q1 survey', 'q2 survey','q3 survey'] #Sheet Names
list_col = ["Month","Date", "Year"] #column Name
xls = "path_to_file/R.xls"
#create the empty df named bill to append after
bill= pd.DataFrame(columns = list_col)
for sheet in b:
# read the sheet
df=pd.read_excel(xls,sheet)
df.rename(columns=lambda x: x.strip().upper(), inplace=True)
# need to assign bill again
bill=bill.append(df[list_col])
# to excel
bill.to_excel('Survey.xlsx', index=False)
it should work and correct the errors in your code, but you can do a bit differently using pd.concat:
list_sheet = ['q1 survey', 'q2 survey','q3 survey'] #Sheet Names
list_col = ["Month","Date", "Year"] #column Name
# read once the xls file and then access the sheet in the loop, should be faster
xls_file = pd.ExcelFile("path_to_file/R.xls")
#create a list to append the df
list_df_to_concat = []
for sheet in list_sheet :
# read the sheet
df= pd.read_excel(xls_file, sheet)
df.rename(columns=lambda x: x.strip().upper(), inplace=True)
# append the df to the list
list_df_to_concat.append(df[list_col])
# to excel
pd.concat(list_df_to_concat).to_excel('Survey.xlsx', index=False)