Appending Columns from several worksheets Python - excel

I am trying to import certain columns of data from several different sheets inside of a workbook. However, while appending it only seems to append 'q2 survey' to a new workbook. How do I get this to append properly?
import sys, os
import pandas as pd
import xlrd
import xlwt
b = ['q1 survey', 'q2 survey','q3 survey'] #Sheet Names
df_t = pd.DataFrame(columns=["Month","Date", "Year"]) #column Name
xls = "path_to_file/R.xls"
sheet=[]
df_b=pd.DataFrame()
pd.read_excel(xls,sheet)
for sheet in b:
df=pd.read_excel(xls,sheet)
df.rename(columns=lambda x: x.strip().upper(), inplace=True)
bill=df_b.append(df[df_t])
bill.to_excel('Survey.xlsx', index=False)

I think if you do:
b = ['q1 survey', 'q2 survey','q3 survey'] #Sheet Names
list_col = ["Month","Date", "Year"] #column Name
xls = "path_to_file/R.xls"
#create the empty df named bill to append after
bill= pd.DataFrame(columns = list_col)
for sheet in b:
# read the sheet
df=pd.read_excel(xls,sheet)
df.rename(columns=lambda x: x.strip().upper(), inplace=True)
# need to assign bill again
bill=bill.append(df[list_col])
# to excel
bill.to_excel('Survey.xlsx', index=False)
it should work and correct the errors in your code, but you can do a bit differently using pd.concat:
list_sheet = ['q1 survey', 'q2 survey','q3 survey'] #Sheet Names
list_col = ["Month","Date", "Year"] #column Name
# read once the xls file and then access the sheet in the loop, should be faster
xls_file = pd.ExcelFile("path_to_file/R.xls")
#create a list to append the df
list_df_to_concat = []
for sheet in list_sheet :
# read the sheet
df= pd.read_excel(xls_file, sheet)
df.rename(columns=lambda x: x.strip().upper(), inplace=True)
# append the df to the list
list_df_to_concat.append(df[list_col])
# to excel
pd.concat(list_df_to_concat).to_excel('Survey.xlsx', index=False)

Related

Append values to Dataframe in loop and if conditions

Need help please.
I have a dataframe that reads rows from Excel and appends to Dataframe if certain columns exist.
I need to add an additional Dataframe if the columns don't exist in a sheet and append filename and sheetname and write all the file names and sheet names for those sheets to an excel file. Also I want the values to be unique.
I tried adding to dfErrorList but it only showed the last sheetname and filename and repeated itself many times in the output excel file
from xlsxwriter import Workbook
import pandas as pd
import openpyxl
import glob
import os
path = 'filestoimport/*.xlsx'
list_of_dfs = []
list_of_dferror = []
dfErrorList = pd.DataFrame() #create empty df
for filepath in glob.glob(path):
xl = pd.ExcelFile(filepath)
# Define an empty list to store individual DataFrames
for sheet_name in xl.sheet_names:
df = pd.read_excel(filepath, sheet_name=sheet_name)
df['sheetname'] = sheet_name
file_name = os.path.basename(filepath)
df['sourcefilename'] = file_name
if "Project ID" in df.columns and "Status" in df.columns:
print('')
*else:
dfErrorList['sheetname'] = df['sheetname'] # adds `sheet_name` into the column
dfErrorList['sourcefilename'] = df['sourcefilename']
continue
list_of_dferror.append((dfErrorList))
df['Status'].fillna('', inplace=True)
df['Added by'].fillna('', inplace=True)
list_of_dfs.append(df)
# # Combine all DataFrames into one
data = pd.concat(list_of_dfs, ignore_index=True)
dataErrors = pd.concat(list_of_dferror, ignore_index=True)
dataErrors.to_excel(r'error.xlsx', index=False)
# data.to_excel("total_countries.xlsx", index=None)

In python, how to concatenate corresponding sheets in multiple excel files

How do I concatenate multiple xlsx files with the same sheet_names. For example,
I have 3 xlsx files, Rob_schedule.xlsx, Mike_schdule.xlsx and Jerome_schedule.xlsx.
Each file has the following sheet/tab names : home, office & school.
The code below generates the 3 xlsx files ( you can copy + paste and run to generate the excel files)
##############################Generating the data for Rob_schedule.xlsx########################
import pandas as pd
import numpy as np
df= {
'Date':[10232020,10242020,10252020,10262020],
'Class':['AP_Bio','AP_Chem','Physics','History'],
'Period':[3,1,2,4]}
school = pd.DataFrame(df,columns = ['Date','Class','Period'])
school
df2= {
'Date':[10232020,10242020,10252020,10262020],
'Meeting':['MQ1','MQ6','MQ2','MQ8'],
'Lunch':[1,1,1,3],
'code':['java','python','C','C++']}
office = pd.DataFrame(df2,columns = ['Date','Meeting','Lunch','code'])
office
df3= {
'cooking':['C','B','D','B'],
'Laundry':['color','white','White','color'],
'cleaning':['balcony','garage','restroom','bathroom']}
home = pd.DataFrame(df3,columns = ['cooking','Laundry','cleaning'])
home
import pandas as pd
#initialze the excel writer
writer = pd.ExcelWriter('Rob_schedule.xlsx', engine='xlsxwriter')
#store your dataframes in a dict, where the key is the sheet name you want
frames = {'home':home, 'office':office,
'school':school}
#now loop thru and put each on a specific sheet
for sheet, frame in frames.items():
frame.to_excel(writer, sheet_name = sheet,index = False)
#critical last step
writer.save()
################################ generating Mike_schedule.xlsx###################################
import pandas as pd
import numpy as np
df= {
'Date':[10232020,10242020,10252020,10262020],
'Class':['AP_Bio','AP_Chem','Physics','History'],
'Period':[3,1,2,4]}
school = pd.DataFrame(df,columns = ['Date','Class','Period'])
school
df2= {
'Date':[10232020,10242020,10252020,10262020],
'Meeting':['MQ1','MQ2','MQ4','MQ5'],
'Lunch':[1,1,1,3],
'code':['javascript','R','C','C++']}
office = pd.DataFrame(df2,columns = ['Date','Meeting','Lunch','code'])
office
df3= {
'cooking':['A','B','D','B'],
'Laundry':['color','white','white','color'],
'cleaning':['patio','garage','living_room','bathroom']}
home = pd.DataFrame(df3,columns = ['cooking','Laundry','cleaning'])
home
#initialze the excel writer
writer = pd.ExcelWriter('Mike_schedule.xlsx', engine='xlsxwriter')
#store your dataframes in a dict, where the key is the sheet name you want
frames = {'home':home, 'office':office,
'school':school}
#now loop thru and put each on a specific sheet
for sheet, frame in frames.items(): # .use .items for python 3.X
frame.to_excel(writer, sheet_name = sheet,index = False)
#critical last step
writer.save()
######################### Generate Jerome schedule###########################################
df= {
'Date':[10232020,10242020,10252020,10262020],
'Class':['French','Math','Physics','History'],
'Period':[3,1,2,4]}
school = pd.DataFrame(df,columns = ['Date','Class','Period'])
school
df2= {
'Date':[10232020,10242020,10252020,10262020],
'Meeting':['MQ1','MQ2','MQ4','MQ5'],
'Lunch':[1,1,1,3],
'code':['javascript','python','R','C++']}
office = pd.DataFrame(df2,columns = ['Date','Meeting','Lunch','code'])
office
df3= {
'cooking':['X','B','D','C'],
'Laundry':['color','white','white','color'],
'cleaning':['patio','garage','living_room','bathroom']}
home = pd.DataFrame(df3,columns = ['cooking','Laundry','cleaning'])
home
import pandas as pd
#initialze the excel writer
writer = pd.ExcelWriter('Jerome_schedule.xlsx', engine='xlsxwriter')
#store your dataframes in a dict, where the key is the sheet name you want
frames = {'home':home, 'office':office,
'school':school}
#now loop thru and put each on a specific sheet
for sheet, frame in frames.items(): # .use .items for python 3.X
frame.to_excel(writer, sheet_name = sheet,index = False)
#critical last step
writer.save()
I want to
concatenate the corresponding sheets/tabs :home, office, and school for Rob_schedule.xlsx,Mike_schedule.xlsx & Jerome_schedule.xlsx
export the concatenated dataframes as family_schedule.xlsx with home, office and school tabs
My attempt:
# This code concatenates all the tabs into one tab, but what I want is to concatenate all by their corresponding sheet/tab names
import pandas as pd
path = os.chdir(r'mypath\\')
files = os.listdir(path)
files
# pull files with `.xlsx` extension
excel_files = [file for file in files if '.xlsx' in file]
excel_files
def create_df_from_excel(file_name):
file = pd.ExcelFile(file_name)
names = file.sheet_names
return pd.concat([file.parse(name) for name in names])
df = pd.concat(
[create_df_from_excel(xl) for xl in excel_files]
)
# save the data frame
writer = pd.ExcelWriter('family_reschedule.xlsx')
df.to_excel(writer, '')
writer.save()
I would iterate over each file, and then over each worksheet, adding each sheet to a different list based on the sheet name.
Then you'll have a structure like...
{
'sheet1': [df_file1_sheet1, df_file2_sheet1, df_file3_sheet1],
'sheet2': [df_file1_sheet2, df_file2_sheet2, df_file3_sheet2],
'sheet3': [df_file1_sheet3, df_file2_sheet3, df_file3_sheet3],
}
Then concatenate each list in to a single dataframe, them write the three dataframes to an excel file.
# This part is just your own code, I've added it here because you
# couldn't figure out where `excel_files` came from
#################################################################
import os
import pandas as pd
path = os.chdir(r'mypath\\')
files = os.listdir(path)
files
# pull files with `.xlsx` extension
excel_files = [file for file in files if '.xlsx' in file]
excel_files
# This part is my actual answer
###############################
from collections import defaultdict
worksheet_lists = defaultdict(list)
for file_name in excel_files:
workbook = pd.ExcelFile(file_name)
for sheet_name in workbook.sheet_names:
worksheet = workbook.parse(sheet_name)
worksheet['source'] = file_name
worksheet_lists[sheet_name].append(worksheet)
worksheets = {
sheet_name: pd.concat(sheet_list)
for (sheet_name, sheet_list)
in worksheet_lists.items()
}
writer = pd.ExcelWriter('family_reschedule.xlsx')
for sheet_name, df in worksheets.items():
df.to_excel(writer, sheet_name=sheet_name, index=False)
writer.save()
Consider building a list of concatenated data frames with list/dict comprehensions by running an outer iteration across sheet names and inner iteration across workbooks:
import pandas as pd
path = "/path/to/workbooks"
workbooks = [f for f in os.listdir(path) if f.endswith(".xlsx")]
sheets = ["home", "office", "school"]
df_dicts = {
sh: pd.concat(
[pd.read_excel(os.path.join(path, wb), sheet_name=sh)
for wb in workbooks]
)
for sh in sheets
}
Then, export to single file:
with pd.ExcelWriter('family_reschedule.xlsx') as writer:
for sh, df in df_dict.items():
df.to_excel(writer, sheet_name=sh, index=False)
writer.save()

Python for the Comparison of excel column elements and print the matched elements in separate column

I have developed the following code and fetched the matched output using a for loop.I need to print these output elements in separate column using python.
excel file name - Sample_data.xlsx
first column - WBS_CODE
second column - PROJECT_CODE
first column and second column are matched and then printed in separate column (column F) using python code. Please find my below code,
import pandas as pd
A = pd.read_excel("D:\python_work\Sample_data.xlsx", sheet_name = '31Sep')
code = A['WBS_CODE'].tolist()
B = pd.read_excel("D:\python_work\Sample_data.xlsx", sheet_name = '4Dec')
code1 = B['PROJECT_CODE'].tolist()
for x in code1:
if x in code:
print(x)
else:
print("NA")
output:
NA
NA
NA
APP-ACI-PJ-APAC-EMEA-ENG
NA
NA
I have found a way to export the output and print them in a separate column in excel sheet. Below is the solution,
import pandas as pd
from openpyxl import load_workbook
# Reading the Excel file columns
A = pd.read_excel("D:\python_work\Sample_data.xlsx", sheet_name='4Dec')
code = A['PROJECT_CODE'].tolist()
B = pd.read_excel("D:\python_work\Sample_data.xlsx", sheet_name='31Sep')
code1 = B['WBS_CODE'].tolist()
# Comparison of columns
class test:
def loop(self):
result = []
for x in code1:
if x in code:
result.append(x)
else:
y = "NA"
result.append(y)
print(result)
# Printing data into Excel
try:
book = load_workbook('D:\python_work\Aew1.xlsx')
writer = pd.ExcelWriter('D:\python_work\Aew1.xlsx', engine='openpyxl')
writer.book = book
writer.sheets = dict((ws.title, ws) for ws in book.worksheets) # loading all the worksheets in opened Excel
df = pd.DataFrame.from_dict({'Column1': result})
df.to_excel(writer, sheet_name='Sheet1', startcol=19)
writer.save()
except FileNotFoundError:
print("File Not found: 'Check the Name or Existence of file specified/'")
except PermissionError:
print("File Opened/No-Access: Check whether you have access to file or file is opened")
test().loop()
steps that solved:
1. Appended the for loop output to a list
2. used openpyxl library to print the output to a column in excel worksheet.
Thanks guyz for help and support. Have a good day

Using xlsxwriter (or other packages) to create Excel tabs with specific naming, and write dataframe to the corresponding tab

I am trying to query based on different criteria, and then create individual tabs in Excel to store the query results.
For example, I want to query all the results that match criteria A, and write the result to an Excel tab named "A". The query result is stored in the panda data frame format.
My problem is, when I want to perform 4 different queries based on criteria "A", "B", "C", "D", the final Excel file only contains one tab, which corresponds to the last criteria in the list. It seems that all the previous tabs are over-written.
Here is sample code where I replace the SQL query part with a pre-set dataframe and the tab name is set to 0, 1, 2, 3 ... instead of the default Sheet1, Sheet2... in Excel.
import pandas as pd
import xlsxwriter
import datetime
def GCF_Refresh(fileCreatePath, inputName):
currentDT = str(datetime.datetime.now())
currentDT = currentDT[0:10]
loadExcelName = currentDT + '_' + inputName + '_Load_File'
fileCreatePath = fileCreatePath +'\\' + loadExcelName+'.xlsx'
wb = xlsxwriter.Workbook(fileCreatePath)
data = [['tom'], ['nick'], ['juli']]
# Create the pandas DataFrame
df = pd.DataFrame(data, columns=['Name'])
writer = pd.ExcelWriter(fileCreatePath, engine='xlsxwriter')
for iCount in range(5):
#worksheet = writer.sheets[str(iCount)]
#worksheet.write(0, 0, 'Name')
df['Name'].to_excel(fileCreatePath, sheet_name=str(iCount), startcol=0, startrow=1, header=None, index=False)
writer.save()
writer.close()
# Change the file path here to store on your local computer
GCF_Refresh("H:\\", "Bulk_Load")
My goal for this sample code is to have 5 tabs named, 0, 1, 2, 3, 4 and each tab has 'tom', 'nick' and 'juli' printed to it. Right now, I just have one tab (named 4), which is the last tab among all the tabs I expected.
There are a number of errors in the code:
The xlsx file is created using XlsxWriter directly and then overwritten by creating it Again in Pandas.
The to_excel() method takes a reference to the writer object not the file path.
The save() and close() are the same thing and shouldn't be in the
loop.
Here is a simplified version of your code with these issues fixes:
import pandas as pd
import xlsxwriter
fileCreatePath = 'test.xlsx'
data = [['tom'], ['nick'], ['juli']]
# Create the pandas DataFrame
df = pd.DataFrame(data, columns=['Name'])
writer = pd.ExcelWriter(fileCreatePath, engine='xlsxwriter')
for iCount in range(5):
df['Name'].to_excel(writer,
sheet_name=str(iCount),
startcol=0,
startrow=1,
header=None,
index=False)
writer.save()
Output:
See Working with Python Pandas and XlsxWriter in the XlsxWriter docs for some details about getting Pandas and XlsxWriter working together.

Delete null values on multiple worksheets and export to excel

I am trying to write a code that deletes null values on multiple excel sheets on specific columns and export the file. Any help is appreciated!
Code below:
import pandas as pd
fileName = 'data.xls'
df = pd.ExcelFile(fileName)
arrayOf_SheetNames = df.sheet_names
for sheetName in arrayOf_SheetNames:
masterdf = pd.read_excel(fileName, sheet_name=sheetName, header=4)
masterdf = masterdf.dropna(subset=['Column 1', 'Column 2'], inplace=True)
masterdf.to_excel('file_path.xls')
One problem you're having is you are redefining what masterdf is for every sheet in the for loop. Another problem is you aren't saving it at the end with writer.save().
dfs = pd.read_excel('/tmp/Untitled spreadsheet-2.xlsx', sheet_name=None, header=4)
writer = pd.ExcelWriter('/tmp/out.xlsx')
for sheetname, df in dfs.items():
df.dropna(subset=['Column 1', 'Column 2'], inplace=True)
df.to_excel(writer, sheetname, index=False)
writer.save()

Resources