Dubious behaviour in multithreaded client-server in C - multithreading

void* thread_request_server_static(void* args); , This is where the worker threads will handle the connection (i have got 4 threads created)
request.c:
struct conn_args
{
int fd;
int filename;
int filesize;
struct conn_args *next;
}
/* other functions */
int add(int fd, char *filename, int filesize)
{
if(buffer_size >= buffer_max_size)
return 1;
struct conn_args *temp = malloc(sizeof(struct conn_args));
temp->fd = fd;
temp->filename = filename;
temp->filesize = filesize;
temp->next = NULL;
if (head == NULL)
{
head = temp;
tail = temp;
}
else
{
tail->next = temp;
tail = temp;
}
buffer_size++;
return 0;
}
struct conn_args* get_args()
{
struct conn_args *temp = NULL;
if(head!=NULL)
{
temp = head;
head = head->next;
buffer_size--;
}
return temp;
}
void *thread_request_serve_static(void *arg)
{
while (1)
{
pthread_mutex_lock(&lock);
struct conn_args *arg = get_args();
if (!arg)
pthread_cond_wait(&c, &lock);
else
{
request_serve_static(arg->fd, arg->filename, arg->filesize);
printf("Request for %s is removed from the buffer\n-----------------\n",
arg->filename);
close_or_die(arg->fd);
free(arg);
}
pthread_mutex_unlock(&lock);
}
// TODO: write code to actualy respond to HTTP requests
}
void request_handle(int fd)
{
/* variable declarations and condition checks */
pthread_mutex_lock(&lock);
int stat = add(fd, filename, sbuf.st_size);
pthread_mutex_unlock(&lock);
if (!stat)
{
printf("-----------------\nRequest for %s is added to the buffer\n",
filename);
pthread_cond_signal(&c); // wake up thread since connections arrive at the buffer.
}
else
{
printf("Server overload: Try again later!");
}
}
wserver.c:
int main(int argc, char *argv[])
{
/* variable initializations and argument reading */
pthread_t thread_pool[num_threads];
for(int i=0; i<num_threads; i++)
pthread_create(&thread_pool[i], NULL, thread_request_serve_static, NULL);
// open the socket connection
int listen_fd = open_listen_fd_or_die(port);
while (1) {
// start accepting HTTP requests from client
struct sockaddr_in client_addr;
int client_len = sizeof(client_addr);
int conn_fd = accept_or_die(listen_fd, (sockaddr_t *) &client_addr, (socklen_t *) &client_len);
// process the HTTP request
request_handle(conn_fd);
// close the connection to client
//close_or_die(conn_fd); // this has to be carefully done at the correct time in request.c
}
Starting the server,
./wserver -p 8003 (port 8003)
bash file for testing multiple connections,
multiple_clients.bash:
echo Starting requests
for ((i=15;i>0;i-=1))
do
./wclient localhost 8003 /files/test$i.html &
done
echo Requests completed
I piped the output into a test.txt and got the following, bash multiple_clients.bash > test.txt
test.txt:
/* Meta data */
This is a test HTML file -------------- 15.
/* Meta data */
/* Meta data */
This is a test HTML file ------------ 13.
/* Meta data */
/* Meta data */
This is a test HTML file ------------ 13.
/* Meta data */
/* Meta data */
This is a test HTML file ---------- 11.
/* Meta data */
/* Meta data */
This is a test HTML file --------- 10.
/* Meta data */
/* Meta data */
This is a test HTML file ---------- 11.
/* Meta data */
/* Meta data */
This is a test HTML file ----- 6.
/* Meta data */
/* Meta data */
This is a test HTML file 1.
/* Meta data */
/* Meta data */
This is a test HTML file - 2.
/* Meta data */
/* Meta data */
This is a test HTML file --- 4.
/* Meta data */
/* Meta data */
This is a test HTML file - 2.
/* Meta data */
/* Meta data */
This is a test HTML file -------- 9.
/* Meta data */
/* Meta data */
This is a test HTML file -- 3.
/* Meta data */
/* Meta data */
This is a test HTML file ---- 5.
/* Meta data */
/* Meta data */
This is a test HTML file ------- 8.
/* Meta data */
As you can see, some files are getting repeated and some are not showing up (7 and 14). Why is this? Although the total output file count is 15, this probably means it is successfully adding all the files to the buffer, but somehow skipping some files and producing duplicates of others.
The program doesn't even crash on double free error, so how is a single file getting handled twice?
Do let me know if any more info is required.
Any help would be appreciated.

Related

Creating dynamically sized MPI file views

I would like to write out a binary file using collective MPI I/O. My plan is to create an MPI derived type analogous to
struct soln_dynamic_t
{
int int_data[2];
double *u; /* Length constant for all instances of this struct */
};
Each processor then creates a view based on the derived type, and writes into the view.
I have this all working for the case in which *u is replaced with u[10] (see complete code below), but ultimately, I'd like to have a dynamic length array for u. (In case it matters, the length will be fixed for all instances of soln_dynamic_t for any run, but not known at compile time.)
What is the best way to handle this?
I have read several posts on why I can't use soln_dynamic_t
directly as an MPI structure. The problem is that processors are not guaranteed to have the same offset between u[0] and int_data[0]. (Is that right?)
On the other hand, the structure
struct soln_static_t
{
int int_data[2];
double u[10]; /* fixed at compile time */
};
works because the offsets are guaranteed to be the same across processors.
I've considered several approaches :
Create the view based on manually defined offsets, etc, rather than using a derived type.
Base the MPI structure on another MPI type, i.e. an contiguous type for ``*u` (is that allowed?)
I am guessing there must be a standard way to do this. Any suggestions would be very helpful.
Several other posts on this issue have been helpful, although they mostly deal with communication and not file I/O.
Here is the complete code::
#include <mpi.h>
typedef struct
{
int int_data[2];
double u[10]; /* Make this a dynamic length (but fixed) */
} soln_static_t;
void build_soln_type(int n, int* int_data, double *u, MPI_Datatype *soln_t)
{
int block_lengths[2] = {2,n};
MPI_Datatype typelist[2] = {MPI_INT, MPI_DOUBLE};
MPI_Aint disp[2], start_address, address;
MPI_Address(int_data,&start_address);
MPI_Address(u,&address);
disp[0] = 0;
disp[1] = address-start_address;
MPI_Datatype tmp_type;
MPI_Type_create_struct(2,block_lengths,disp,typelist,&tmp_type);
MPI_Aint extent;
extent = block_lengths[0]*sizeof(int) + block_lengths[1]*sizeof(double);
MPI_Type_create_resized(tmp_type, 0, extent, soln_t);
MPI_Type_commit(soln_t);
}
void main(int argc, char** argv)
{
MPI_File file;
int globalsize, localsize, starts, order;
MPI_Datatype localarray, soln_t;
int rank, nprocs, nsize = 10; /* must match size in struct above */
/* --- Initialize MPI */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
/* --- Set up data to write out */
soln_static_t data;
data.int_data[0] = nsize;
data.int_data[1] = rank;
data.u[0] = 3.14159; /* To check that data is written as expected */
build_soln_type(nsize, data.int_data, data.u, &soln_t);
MPI_File_open(MPI_COMM_WORLD, "bin.out",
MPI_MODE_CREATE|MPI_MODE_WRONLY,
MPI_INFO_NULL, &file);
/* --- Create file view for this processor */
globalsize = nprocs;
localsize = 1;
starts = rank;
order = MPI_ORDER_C;
MPI_Type_create_subarray(1, &globalsize, &localsize, &starts, order,
soln_t, &localarray);
MPI_Type_commit(&localarray);
MPI_File_set_view(file, 0, soln_t, localarray,
"native", MPI_INFO_NULL);
/* --- Write data into view */
MPI_File_write_all(file, data.int_data, 1, soln_t, MPI_STATUS_IGNORE);
/* --- Clean up */
MPI_File_close(&file);
MPI_Type_free(&localarray);
MPI_Type_free(&soln_t);
MPI_Finalize();
}
Since the size of the u array of the soln_dynamic_t type is known at runtime and will not change after that, I'd rather suggest an other approach.
Basically, you store all the data contiguous in memory :
typedef struct
{
int int_data[2];
double u[]; /* Make this a dynamic length (but fixed) */
} soln_dynamic_t;
Then you have to manually allocate this struct
soln_dynamic_t * alloc_soln(int nsize, int count) {
return (soln_dynamic_t *)calloc(offsetof(soln_dynamic_t, u)+nsize*sizeof(double), count);
}
Note you cannot directly access an array of soln_dynamic_t because the size is unknown at compile time. Instead, you have to manually calculate the pointers.
soln_dynamic_t *p = alloc_soln(10, 2);
p[0].int_data[0] = 1; // OK
p[0].u[0] = 2; // OK
p[1].int_data[0] = 3; // KO ! since sizeof(soln_dynamic_t) is unknown at compile time.
Here is the full rewritten version of your program
#include <mpi.h>
#include <malloc.h>
typedef struct
{
int int_data[2];
double u[]; /* Make this a dynamic length (but fixed) */
} soln_dynamic_t;
void build_soln_type(int n, MPI_Datatype *soln_t)
{
int block_lengths[2] = {2,n};
MPI_Datatype typelist[2] = {MPI_INT, MPI_DOUBLE};
MPI_Aint disp[2];
disp[0] = offsetof(soln_dynamic_t, int_data);
disp[1] = offsetof(soln_dynamic_t, u);
MPI_Datatype tmp_type;
MPI_Type_create_struct(2,block_lengths,disp,typelist,&tmp_type);
MPI_Aint extent;
extent = offsetof(soln_dynamic_t, u) + block_lengths[1]*sizeof(double);
MPI_Type_create_resized(tmp_type, 0, extent, soln_t);
MPI_Type_free(&tmp_type);
MPI_Type_commit(soln_t);
}
soln_dynamic_t * alloc_soln(int nsize, int count) {
return (soln_dynamic_t *)calloc(offsetof(soln_dynamic_t, u) + nsize*sizeof(double), count);
}
int main(int argc, char** argv)
{
MPI_File file;
int globalsize, localsize, starts, order;
MPI_Datatype localarray, soln_t;
int rank, nprocs, nsize = 10; /* must match size in struct above */
/* --- Initialize MPI */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
/* --- Set up data to write out */
soln_dynamic_t *data = alloc_soln(nsize,1);
data->int_data[0] = nsize;
data->int_data[1] = rank;
data->u[0] = 3.14159; /* To check that data is written as expected */
build_soln_type(nsize, &soln_t);
MPI_File_open(MPI_COMM_WORLD, "bin2.out",
MPI_MODE_CREATE|MPI_MODE_WRONLY,
MPI_INFO_NULL, &file);
/* --- Create file view for this processor */
globalsize = nprocs;
localsize = 1;
starts = rank;
order = MPI_ORDER_C;
MPI_Type_create_subarray(1, &globalsize, &localsize, &starts, order,
soln_t, &localarray);
MPI_Type_commit(&localarray);
MPI_File_set_view(file, 0, soln_t, localarray,
"native", MPI_INFO_NULL);
/* --- Write data into view */
MPI_File_write_all(file, data, 1, soln_t, MPI_STATUS_IGNORE);
/* --- Clean up */
MPI_File_close(&file);
MPI_Type_free(&localarray);
MPI_Type_free(&soln_t);
MPI_Finalize();
return 0;
}

How to use the dmafd from iotcl VIDIOC_EXPBUF with sendfile?

The ioctl VIDIOC_EXPBUF exports the dma memory as a filedescriptor. I want so transfer these memory over the network using sendfile (because it is really fast compared to send() or write()).
But sendfile() does not work on these filedescriptor. sendfile() returns with Error -1 and Errno is: Illegal seek.
How to get this working?
int buffer_export(int *vfd, int index, int *dmafd)
{
struct v4l2_exportbuffer expbuf;
memset(&expbuf, 0, sizeof(expbuf));
expbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
expbuf.index = index;
if (ioctl(*vfd, VIDIOC_EXPBUF, &expbuf) == -1) {
perror("VIDIOC_EXPBUF");
return -1;
}
*dmafd = expbuf.fd;
return 0;
}
Here the transfer code.
int *vfd;
//Capture Image
int dmafd, err, bytes_send;
int frame_size = 721920;
off_t offset = 0;
err = buffer_export( vfd, 0, &dmafd);
// returns 0
err = sendfile(socket_fd, dmafd ,&offset, frame_size);
//returns with -1
Update:
Browsing the sendfile source I came across the error occurs while checking the input fd.
retval = -ESPIPE; //=-29
if( !(in.file->f_mode & FMODE_PREAD) )
goto in_fd; //error
f_mode=5; which is
/* file is open for reading */
#define FMODE_READ ((__force fmode_t)0x1)
/* file is open for writing */
#define FMODE_WRITE ((__force fmode_t)0x2)
/* file is seekable */
#define FMODE_LSEEK ((__force fmode_t)0x4)
/* file can be accessed using pread */
#define FMODE_PREAD ((__force fmode_t)0x8)
/* file can be accessed using pwrite */
fails

Pseudo Block Driver: I have generated the device file for block driver using mknod

I have generated the device file for block driver using mknod. Now how to read/write/transfer any request or file through my generated device file?
Go through this sample block driver
sbd.c
/*
* A sample, extra-simple block driver. Updated for kernel 2.6.31.
*
* (C) 2003 Eklektix, Inc.
* (C) 2010 Pat Patterson <pat at superpat dot com>
* Redistributable under the terms of the GNU GPL.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/kernel.h> /* printk() */
#include <linux/fs.h> /* everything... */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/vmalloc.h>
#include <linux/genhd.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
MODULE_LICENSE("Dual BSD/GPL");
static char *Version = "1.4";
static int major_num = 0;
module_param(major_num, int, 0);
static int logical_block_size = 512;
module_param(logical_block_size, int, 0);
static int nsectors = 1024; /* How big the drive is */
module_param(nsectors, int, 0);
/*
* We can tweak our hardware sector size, but the kernel talks to us
* in terms of small sectors, always.
*/
#define KERNEL_SECTOR_SIZE 512
/*
* Our request queue.
*/
static struct request_queue *Queue;
/*
* The internal representation of our device.
*/
static struct sbd_device {
unsigned long size;
spinlock_t lock;
u8 *data;
struct gendisk *gd;
} Device;
/*
* Handle an I/O request.
*/
static void sbd_transfer(struct sbd_device *dev, sector_t sector,
unsigned long nsect, char *buffer, int write) {
unsigned long offset = sector * logical_block_size;
unsigned long nbytes = nsect * logical_block_size;
if ((offset + nbytes) > dev->size) {
printk (KERN_NOTICE "sbd: Beyond-end write (%ld %ld)\n", offset, nbytes);
return;
}
if (write)
memcpy(dev->data + offset, buffer, nbytes);
else
memcpy(buffer, dev->data + offset, nbytes);
}
static void sbd_request(struct request_queue *q) {
struct request *req;
req = blk_fetch_request(q);
while (req != NULL) {
// blk_fs_request() was removed in 2.6.36 - many thanks to
// Christian Paro for the heads up and fix...
//if (!blk_fs_request(req)) {
if (req == NULL || (req->cmd_type != REQ_TYPE_FS)) {
printk (KERN_NOTICE "Skip non-CMD request\n");
__blk_end_request_all(req, -EIO);
continue;
}
sbd_transfer(&Device, blk_rq_pos(req), blk_rq_cur_sectors(req),
req->buffer, rq_data_dir(req));
if ( ! __blk_end_request_cur(req, 0) ) {
req = blk_fetch_request(q);
}
}
}
/*
* The HDIO_GETGEO ioctl is handled in blkdev_ioctl(), which
* calls this. We need to implement getgeo, since we can't
* use tools such as fdisk to partition the drive otherwise.
*/
int sbd_getgeo(struct block_device * block_device, struct hd_geometry * geo) {
long size;
/* We have no real geometry, of course, so make something up. */
size = Device.size * (logical_block_size / KERNEL_SECTOR_SIZE);
geo->cylinders = (size & ~0x3f) >> 6;
geo->heads = 4;
geo->sectors = 16;
geo->start = 0;
return 0;
}
/*
* The device operations structure.
*/
static struct block_device_operations sbd_ops = {
.owner = THIS_MODULE,
.getgeo = sbd_getgeo
};
static int __init sbd_init(void) {
/*
* Set up our internal device.
*/
Device.size = nsectors * logical_block_size;
spin_lock_init(&Device.lock);
Device.data = vmalloc(Device.size);
if (Device.data == NULL)
return -ENOMEM;
/*
* Get a request queue.
*/
Queue = blk_init_queue(sbd_request, &Device.lock);
if (Queue == NULL)
goto out;
blk_queue_logical_block_size(Queue, logical_block_size);
/*
* Get registered.
*/
major_num = register_blkdev(major_num, "sbd");
if (major_num < 0) {
printk(KERN_WARNING "sbd: unable to get major number\n");
goto out;
}
/*
* And the gendisk structure.
*/
Device.gd = alloc_disk(16);
if (!Device.gd)
goto out_unregister;
Device.gd->major = major_num;
Device.gd->first_minor = 0;
Device.gd->fops = &sbd_ops;
Device.gd->private_data = &Device;
strcpy(Device.gd->disk_name, "sbd0");
set_capacity(Device.gd, nsectors);
Device.gd->queue = Queue;
add_disk(Device.gd);
return 0;
out_unregister:
unregister_blkdev(major_num, "sbd");
out:
vfree(Device.data);
return -ENOMEM;
}
static void __exit sbd_exit(void)
{
del_gendisk(Device.gd);
put_disk(Device.gd);
unregister_blkdev(major_num, "sbd");
blk_cleanup_queue(Queue);
vfree(Device.data);
}
module_init(sbd_init);
module_exit(sbd_exit);
For Pseudo block device Also refer this
Reference http://free-electrons.com/doc/block_drivers.pdf

accessing i2c platform device from userspace program

I'm trying to access an 24c256 eeprom content from user space in a am335x_starter_kit.
I dont have to add eeprom driver into kernel and make modifications in board.c file because board already uses eeprom to access some board configuration and Mac address information.
I just want to access eeprom content from user space.
I used read and write functions for character devices before but i2c platform devices doesnt have these functions.
struct i2c_driver {
unsigned int class;
int (* attach_adapter) (struct i2c_adapter *);
int (* probe) (struct i2c_client *, const struct i2c_device_id *);
int (* remove) (struct i2c_client *);
void (* shutdown) (struct i2c_client *);
void (* alert) (struct i2c_client *, unsigned int data);
int (* command) (struct i2c_client *client, unsigned int cmd, void *arg);
struct device_driver driver;
const struct i2c_device_id * id_table;
int (* detect) (struct i2c_client *, struct i2c_board_info *);
const unsigned short * address_list;
struct list_head clients;
};
This is the eeprom driver. Board file uses it from kernel to get mac address and board configuration data.
/*
* at24.c - handle most I2C EEPROMs
*
* Copyright (C) 2005-2007 David Brownell
* Copyright (C) 2008 Wolfram Sang, Pengutronix
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
#include <linux/mod_devicetable.h>
#include <linux/log2.h>
#include <linux/bitops.h>
#include <linux/jiffies.h>
#include <linux/of.h>
#include <linux/i2c.h>
#include <linux/i2c/at24.h>
/*
* I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
* Differences between different vendor product lines (like Atmel AT24C or
* MicroChip 24LC, etc) won't much matter for typical read/write access.
* There are also I2C RAM chips, likewise interchangeable. One example
* would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
*
* However, misconfiguration can lose data. "Set 16-bit memory address"
* to a part with 8-bit addressing will overwrite data. Writing with too
* big a page size also loses data. And it's not safe to assume that the
* conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
* uses 0x51, for just one example.
*
* Accordingly, explicit board-specific configuration data should be used
* in almost all cases. (One partial exception is an SMBus used to access
* "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
*
* So this driver uses "new style" I2C driver binding, expecting to be
* told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
* similar kernel-resident tables; or, configuration data coming from
* a bootloader.
*
* Other than binding model, current differences from "eeprom" driver are
* that this one handles write access and isn't restricted to 24c02 devices.
* It also handles larger devices (32 kbit and up) with two-byte addresses,
* which won't work on pure SMBus systems.
*/
struct at24_data {
struct at24_platform_data chip;
struct memory_accessor macc;
int use_smbus;
/*
* Lock protects against activities from other Linux tasks,
* but not from changes by other I2C masters.
*/
struct mutex lock;
struct bin_attribute bin;
u8 *writebuf;
unsigned write_max;
unsigned num_addresses;
/*
* Some chips tie up multiple I2C addresses; dummy devices reserve
* them for us, and we'll use them with SMBus calls.
*/
struct i2c_client *client[];
};
/*
* This parameter is to help this driver avoid blocking other drivers out
* of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
* clock, one 256 byte read takes about 1/43 second which is excessive;
* but the 1/170 second it takes at 400 kHz may be quite reasonable; and
* at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
*
* This value is forced to be a power of two so that writes align on pages.
*/
static unsigned io_limit = 128;
module_param(io_limit, uint, 0);
MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
/*
* Specs often allow 5 msec for a page write, sometimes 20 msec;
* it's important to recover from write timeouts.
*/
static unsigned write_timeout = 25;
module_param(write_timeout, uint, 0);
MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
#define AT24_SIZE_BYTELEN 5
#define AT24_SIZE_FLAGS 8
#define AT24_BITMASK(x) (BIT(x) - 1)
/* create non-zero magic value for given eeprom parameters */
#define AT24_DEVICE_MAGIC(_len, _flags) \
((1 << AT24_SIZE_FLAGS | (_flags)) \
<< AT24_SIZE_BYTELEN | ilog2(_len))
static const struct i2c_device_id at24_ids[] = {
/* needs 8 addresses as A0-A2 are ignored */
{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
/* old variants can't be handled with this generic entry! */
{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
/* spd is a 24c02 in memory DIMMs */
{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
/* 24rf08 quirk is handled at i2c-core */
{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
{ "at24", 0 },
{ /* END OF LIST */ }
};
MODULE_DEVICE_TABLE(i2c, at24_ids);
/*-------------------------------------------------------------------------*/
/*
* This routine supports chips which consume multiple I2C addresses. It
* computes the addressing information to be used for a given r/w request.
* Assumes that sanity checks for offset happened at sysfs-layer.
*/
static struct i2c_client *at24_translate_offset(struct at24_data *at24,
unsigned *offset)
{
unsigned i;
if (at24->chip.flags & AT24_FLAG_ADDR16) {
i = *offset >> 16;
*offset &= 0xffff;
} else {
i = *offset >> 8;
*offset &= 0xff;
}
return at24->client[i];
}
static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
unsigned offset, size_t count)
{
struct i2c_msg msg[2];
u8 msgbuf[2];
struct i2c_client *client;
unsigned long timeout, read_time;
int status, i;
memset(msg, 0, sizeof(msg));
/*
* REVISIT some multi-address chips don't rollover page reads to
* the next slave address, so we may need to truncate the count.
* Those chips might need another quirk flag.
*
* If the real hardware used four adjacent 24c02 chips and that
* were misconfigured as one 24c08, that would be a similar effect:
* one "eeprom" file not four, but larger reads would fail when
* they crossed certain pages.
*/
/*
* Slave address and byte offset derive from the offset. Always
* set the byte address; on a multi-master board, another master
* may have changed the chip's "current" address pointer.
*/
client = at24_translate_offset(at24, &offset);
if (count > io_limit)
count = io_limit;
switch (at24->use_smbus) {
case I2C_SMBUS_I2C_BLOCK_DATA:
/* Smaller eeproms can work given some SMBus extension calls */
if (count > I2C_SMBUS_BLOCK_MAX)
count = I2C_SMBUS_BLOCK_MAX;
break;
case I2C_SMBUS_WORD_DATA:
count = 2;
break;
case I2C_SMBUS_BYTE_DATA:
count = 1;
break;
default:
/*
* When we have a better choice than SMBus calls, use a
* combined I2C message. Write address; then read up to
* io_limit data bytes. Note that read page rollover helps us
* here (unlike writes). msgbuf is u8 and will cast to our
* needs.
*/
i = 0;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msgbuf[i++] = offset >> 8;
msgbuf[i++] = offset;
msg[0].addr = client->addr;
msg[0].buf = msgbuf;
msg[0].len = i;
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = buf;
msg[1].len = count;
}
/*
* Reads fail if the previous write didn't complete yet. We may
* loop a few times until this one succeeds, waiting at least
* long enough for one entire page write to work.
*/
timeout = jiffies + msecs_to_jiffies(write_timeout);
do {
read_time = jiffies;
switch (at24->use_smbus) {
case I2C_SMBUS_I2C_BLOCK_DATA:
status = i2c_smbus_read_i2c_block_data(client, offset,
count, buf);
break;
case I2C_SMBUS_WORD_DATA:
status = i2c_smbus_read_word_data(client, offset);
if (status >= 0) {
buf[0] = status & 0xff;
buf[1] = status >> 8;
status = count;
}
break;
case I2C_SMBUS_BYTE_DATA:
status = i2c_smbus_read_byte_data(client, offset);
if (status >= 0) {
buf[0] = status;
status = count;
}
break;
default:
status = i2c_transfer(client->adapter, msg, 2);
if (status == 2)
status = count;
}
dev_dbg(&client->dev, "read %zu#%d --> %d (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
/* REVISIT: at HZ=100, this is sloooow */
msleep(1);
} while (time_before(read_time, timeout));
return -ETIMEDOUT;
}
static ssize_t at24_read(struct at24_data *at24,
char *buf, loff_t off, size_t count)
{
ssize_t retval = 0;
if (unlikely(!count))
return count;
/*
* Read data from chip, protecting against concurrent updates
* from this host, but not from other I2C masters.
*/
mutex_lock(&at24->lock);
while (count) {
ssize_t status;
status = at24_eeprom_read(at24, buf, off, count);
if (status <= 0) {
if (retval == 0)
retval = status;
break;
}
buf += status;
off += status;
count -= status;
retval += status;
}
mutex_unlock(&at24->lock);
return retval;
}
static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off, size_t count)
{
struct at24_data *at24;
at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
return at24_read(at24, buf, off, count);
}
/*
* Note that if the hardware write-protect pin is pulled high, the whole
* chip is normally write protected. But there are plenty of product
* variants here, including OTP fuses and partial chip protect.
*
* We only use page mode writes; the alternative is sloooow. This routine
* writes at most one page.
*/
static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
unsigned offset, size_t count)
{
struct i2c_client *client;
struct i2c_msg msg;
ssize_t status;
unsigned long timeout, write_time;
unsigned next_page;
/* Get corresponding I2C address and adjust offset */
client = at24_translate_offset(at24, &offset);
/* write_max is at most a page */
if (count > at24->write_max)
count = at24->write_max;
/* Never roll over backwards, to the start of this page */
next_page = roundup(offset + 1, at24->chip.page_size);
if (offset + count > next_page)
count = next_page - offset;
/* If we'll use I2C calls for I/O, set up the message */
if (!at24->use_smbus) {
int i = 0;
msg.addr = client->addr;
msg.flags = 0;
/* msg.buf is u8 and casts will mask the values */
msg.buf = at24->writebuf;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msg.buf[i++] = offset >> 8;
msg.buf[i++] = offset;
memcpy(&msg.buf[i], buf, count);
msg.len = i + count;
}
/*
* Writes fail if the previous one didn't complete yet. We may
* loop a few times until this one succeeds, waiting at least
* long enough for one entire page write to work.
*/
timeout = jiffies + msecs_to_jiffies(write_timeout);
do {
write_time = jiffies;
if (at24->use_smbus) {
status = i2c_smbus_write_i2c_block_data(client,
offset, count, buf);
if (status == 0)
status = count;
} else {
status = i2c_transfer(client->adapter, &msg, 1);
if (status == 1)
status = count;
}
dev_dbg(&client->dev, "write %zu#%d --> %zd (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
/* REVISIT: at HZ=100, this is sloooow */
msleep(1);
} while (time_before(write_time, timeout));
return -ETIMEDOUT;
}
static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
size_t count)
{
ssize_t retval = 0;
if (unlikely(!count))
return count;
/*
* Write data to chip, protecting against concurrent updates
* from this host, but not from other I2C masters.
*/
mutex_lock(&at24->lock);
while (count) {
ssize_t status;
status = at24_eeprom_write(at24, buf, off, count);
if (status <= 0) {
if (retval == 0)
retval = status;
break;
}
buf += status;
off += status;
count -= status;
retval += status;
}
mutex_unlock(&at24->lock);
return retval;
}
static ssize_t at24_bin_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off, size_t count)
{
struct at24_data *at24;
at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
return at24_write(at24, buf, off, count);
}
/*-------------------------------------------------------------------------*/
/*
* This lets other kernel code access the eeprom data. For example, it
* might hold a board's Ethernet address, or board-specific calibration
* data generated on the manufacturing floor.
*/
static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
off_t offset, size_t count)
{
struct at24_data *at24 = container_of(macc, struct at24_data, macc);
return at24_read(at24, buf, offset, count);
}
static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
off_t offset, size_t count)
{
struct at24_data *at24 = container_of(macc, struct at24_data, macc);
return at24_write(at24, buf, offset, count);
}
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_OF
static void at24_get_ofdata(struct i2c_client *client,
struct at24_platform_data *chip)
{
const __be32 *val;
struct device_node *node = client->dev.of_node;
if (node) {
if (of_get_property(node, "read-only", NULL))
chip->flags |= AT24_FLAG_READONLY;
val = of_get_property(node, "pagesize", NULL);
if (val)
chip->page_size = be32_to_cpup(val);
}
}
#else
static void at24_get_ofdata(struct i2c_client *client,
struct at24_platform_data *chip)
{ }
#endif /* CONFIG_OF */
static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct at24_platform_data chip;
bool writable;
int use_smbus = 0;
struct at24_data *at24;
int err;
unsigned i, num_addresses;
kernel_ulong_t magic;
if (client->dev.platform_data) {
chip = *(struct at24_platform_data *)client->dev.platform_data;
} else {
if (!id->driver_data) {
err = -ENODEV;
goto err_out;
}
magic = id->driver_data;
chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
magic >>= AT24_SIZE_BYTELEN;
chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
/*
* This is slow, but we can't know all eeproms, so we better
* play safe. Specifying custom eeprom-types via platform_data
* is recommended anyhow.
*/
chip.page_size = 1;
/* update chipdata if OF is present */
at24_get_ofdata(client, &chip);
chip.setup = NULL;
chip.context = NULL;
}
if (!is_power_of_2(chip.byte_len))
dev_warn(&client->dev,
"byte_len looks suspicious (no power of 2)!\n");
if (!chip.page_size) {
dev_err(&client->dev, "page_size must not be 0!\n");
err = -EINVAL;
goto err_out;
}
if (!is_power_of_2(chip.page_size))
dev_warn(&client->dev,
"page_size looks suspicious (no power of 2)!\n");
/* Use I2C operations unless we're stuck with SMBus extensions. */
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
if (chip.flags & AT24_FLAG_ADDR16) {
err = -EPFNOSUPPORT;
goto err_out;
}
if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
} else if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_WORD_DATA)) {
use_smbus = I2C_SMBUS_WORD_DATA;
} else if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
use_smbus = I2C_SMBUS_BYTE_DATA;
} else {
err = -EPFNOSUPPORT;
goto err_out;
}
}
//???????????????
if (chip.flags & AT24_FLAG_TAKE8ADDR)
num_addresses = 8;
else
num_addresses = DIV_ROUND_UP(chip.byte_len, (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
at24 = kzalloc(sizeof(struct at24_data) + num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
if (!at24) {
err = -ENOMEM;
goto err_out;
}
mutex_init(&at24->lock);
at24->use_smbus = use_smbus;
at24->chip = chip;
at24->num_addresses = num_addresses;
/*
* Export the EEPROM bytes through sysfs, since that's convenient.
* By default, only root should see the data (maybe passwords etc)
*/
sysfs_bin_attr_init(&at24->bin);
at24->bin.attr.name = "eeprom";
at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
at24->bin.read = at24_bin_read;
at24->bin.size = chip.byte_len;
at24->macc.read = at24_macc_read;
writable = !(chip.flags & AT24_FLAG_READONLY);
if (writable) {
if (!use_smbus || i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
unsigned write_max = chip.page_size;
at24->macc.write = at24_macc_write;
at24->bin.write = at24_bin_write;
at24->bin.attr.mode |= S_IWUSR;
if (write_max > io_limit)
write_max = io_limit;
if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
write_max = I2C_SMBUS_BLOCK_MAX;
at24->write_max = write_max;
/* buffer (data + address at the beginning) */
at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL);
if (!at24->writebuf) {
err = -ENOMEM;
goto err_struct;
}
} else {
dev_warn(&client->dev,
"cannot write due to controller restrictions.");
}
}
at24->client[0] = client;
/* use dummy devices for multiple-address chips */
for (i = 1; i < num_addresses; i++) {
at24->client[i] = i2c_new_dummy(client->adapter,
client->addr + i);
if (!at24->client[i]) {
dev_err(&client->dev, "address 0x%02x unavailable\n",
client->addr + i);
err = -EADDRINUSE;
goto err_clients;
}
}
err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
if (err)
goto err_clients;
i2c_set_clientdata(client, at24);
dev_info(&client->dev, "%zu byte %s EEPROM, %s, %u bytes/write\n", at24->bin.size, client->name,
writable ? "writable" : "read-only", at24->write_max);
if (use_smbus == I2C_SMBUS_WORD_DATA ||
use_smbus == I2C_SMBUS_BYTE_DATA) {
dev_notice(&client->dev, "Falling back to %s reads, "
"performance will suffer\n", use_smbus ==
I2C_SMBUS_WORD_DATA ? "word" : "byte");
}
/* export data to kernel code */
if (chip.setup)
chip.setup(&at24->macc, chip.context);
return 0;
err_clients:
for (i = 1; i < num_addresses; i++)
if (at24->client[i])
i2c_unregister_device(at24->client[i]);
kfree(at24->writebuf);
err_struct:
kfree(at24);
err_out:
dev_dbg(&client->dev, "probe error %d\n", err);
return err;
}
/*-------------------------------------------------------------------------*/
static int __devexit at24_remove(struct i2c_client *client)
{
struct at24_data *at24;
int i;
at24 = i2c_get_clientdata(client);
sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);
for (i = 1; i < at24->num_addresses; i++)
i2c_unregister_device(at24->client[i]);
kfree(at24->writebuf);
kfree(at24);
return 0;
}
/*-------------------------------------------------------------------------*/
static struct i2c_driver at24_driver = {
.driver = {
.name = "at24",
.owner = THIS_MODULE,
},
.probe = at24_probe,
.remove = __devexit_p(at24_remove),
.id_table = at24_ids,
};
static int __init at24_init(void)
{
if (!io_limit) {
pr_err("at24: io_limit must not be 0!\n");
return -EINVAL;
}
io_limit = rounddown_pow_of_two(io_limit);
return i2c_add_driver(&at24_driver);
}
module_init(at24_init);
static void __exit at24_exit(void)
{
i2c_del_driver(&at24_driver);
}
module_exit(at24_exit);
MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
MODULE_AUTHOR("David Brownell and Wolfram Sang");
MODULE_LICENSE("GPL");
These are snippets from board file:
static struct i2c_board_info __initdata am335x_i2c0_boardinfo[] = {
{
/* Baseboard board EEPROM */
I2C_BOARD_INFO("24c256", BASEBOARD_I2C_ADDR),
.platform_data = &am335x_baseboard_eeprom_info,
},
.
.
static struct at24_platform_data am335x_baseboard_eeprom_info = {
.byte_len = (256*1024) / 8,
.page_size = 64,
.flags = AT24_FLAG_ADDR16,
.setup = am335x_evm_setup,
.context = (void *)NULL,
};
static void am335x_evm_setup(struct memory_accessor *mem_acc, void *context)
{
int ret;
char tmp[10];
struct device *mpu_dev;
/* 1st get the MAC address from EEPROM */
ret = mem_acc->read(mem_acc, (char *)&am335x_mac_addr,
EEPROM_MAC_ADDRESS_OFFSET, sizeof(am335x_mac_addr));
.
.
.
How can i read from/write into eeprom content from user space.
Should i use sysfs? What should i do?
EEPROM:
It's part of setting the MAC and serial number, but the only way to know if the EEPROM is working is to read its content.
$ cat /sys/bus/i2c/devices/2-0057/eeprom | hexdump -C

invalid conversion from int to socklen

Below is my code for Linux.
I am implementing a client/server application and below is the server .cpp file.
int main()
{
int serverFd, clientFd, serverLen, clientLen;
struct sockaddr_un serverAddress;/* Server address */
struct sockaddr_un clientAddress; /* Client address */
struct sockaddr* serverSockAddrPtr; /* Ptr to server address */
struct sockaddr* clientSockAddrPtr; /* Ptr to client address */
/* Ignore death-of-child signals to prevent zombies */
signal (SIGCHLD, SIG_IGN);
serverSockAddrPtr = (struct sockaddr*) &serverAddress;
serverLen = sizeof (serverAddress);
clientSockAddrPtr = (struct sockaddr*) &clientAddress;
clientLen = sizeof (clientAddress);
/* Create a socket, bidirectional, default protocol */
serverFd = socket (AF_LOCAL, SOCK_STREAM, DEFAULT_PROTOCOL);
serverAddress.sun_family = AF_LOCAL; /* Set domain type */
strcpy (serverAddress.sun_path, "css"); /* Set name */
unlink ("css"); /* Remove file if it already exists */
bind (serverFd, serverSockAddrPtr, serverLen); /* Create file */
listen (serverFd, 5); /* Maximum pending connection length */
readData();
while (1) /* Loop forever */
{
/* Accept a client connection */
clientFd = accept (serverFd, clientSockAddrPtr, &clientLen);
if (fork () == 0) /* Create child to send recipe */
{
printf ("");
printf ("\nRunner server program. . .\n\n");
printf ("Country Directory Server Started!\n");
close (clientFd); /* Close the socket */
exit (/* EXIT_SUCCESS */ 0); /* Terminate */
}
else
close (clientFd); /* Close the client descriptor */
}
}
When i tried to compile it displays an error message which shows.
server.cpp:237:67: error: invalid conversion from ‘int*’ to ‘socklen_t*’
server.cpp:237:67: error: initializing argument 3 of ‘int accept(int, sockaddr*, socklen_t*)’
It points to this line
clientFd = accept (serverFd, clientSockAddrPtr, &clientLen);
I do not actually know how to solve this problem.
Thanks in advance to those who helped! :)
Define clientLen as socklen_t:
socklen_t clientLen;
instead of
int clientLen;
Change,
clientFd = accept (serverFd, clientSockAddrPtr, &clientLen);
to
clientFd = accept (serverFd, clientSockAddrPtr,(socklen_t*)&clientLen);

Resources