pandas get time delta between two conditions per group - python-3.x

I have a dataframe:
> df = batch Code. time
> a 100. 2019-08-01 00:59:12.000
> a 120. 2019-08-01 00:59:32.000
> a 130. 2019-08-01 00:59:42.000
> a 120. 2019-08-01 00:59:52.000
> b 100. 2019-08-01 00:44:11.000
> b 140. 2019-08-02 00:14:11.000
> b 150. 2019-08-03 00:47:11.000
> c 150. 2019-09-01 00:44:11.000
> d 100. 2019-08-01 00:10:00.000
> d 100. 2019-08-01 00:10:05.000
> d 130. 2019-08-01 00:10:10.000
> d 130. 2019-08-01 00:10:20.000
I want to get the number of seconds, per group, between the time of the first '100' code to the last '130' code.
If for a group there is no code 100 with code 130 after (one of them is missing) - put nan.
So the output should be:
df2 = batch duration
a 30
b. nan
c. nan
d. 20
What is the best way to do it?

Use:
#convert values to datetimes
df['time'] = pd.to_datetime(df['time'])
#get first 100 Code per batch
s1=df[df['Code.'].eq(100)].drop_duplicates('batch').set_index('batch')['time']
#get last 130 Code per batch
s2=df[df['Code.'].eq(130)].drop_duplicates('batch', keep='last').set_index('batch')['time']
#subtract and convert to timedeltas
df = (s2.sub(s1)
.dt.total_seconds()
.reindex(df['batch'].unique())
.reset_index(name='duration'))
print (df)
batch duration
0 a 30.0
1 b NaN
2 c NaN
3 d 20.0

As an alternative:
batchs = pd.DataFrame(df['batch'].unique(),columns=['batch'])
df = df[(df['code'] == 100) | (df['code']==130)]
final=pd.concat([
df.drop_duplicates(subset='code',keep='first'),
df.drop_duplicates(subset='code',keep='last'),
])
final['duration'] = (final['time'].shift(-1) - final['time']).dt.total_seconds()
final = final.drop_duplicates('batch',keep='first').drop(['time','code'],axis=1).merge(batchs,on='batch',how='right')
final
batch duration
0 a 30.0
1 b nan
2 c nan
3 d 15.0

Related

calculate different between consecutive date records at an ID level

I have a dataframe as
col 1 col 2
A 2020-07-13
A 2020-07-15
A 2020-07-18
A 2020-07-19
B 2020-07-13
B 2020-07-19
C 2020-07-13
C 2020-07-18
I want it to become the following in a new dataframe
col_3 diff_btw_1st_2nd_date diff_btw_2nd_3rd_date diff_btw_3rd_4th_date
A 2 3 1
B 6 NaN NaN
C 5 NaN NaN
I tried getting the groupby at Col 1 level , but not getting the intended result. Can anyone help?
Use GroupBy.cumcount for counter pre column col 1 and reshape by DataFrame.set_index with Series.unstack, then use DataFrame.diff, remove first only NaNs columns by DataFrame.iloc, convert timedeltas to days by Series.dt.days per all columns and change columns names by DataFrame.add_prefix:
df['col 2'] = pd.to_datetime(df['col 2'])
df = (df.set_index(['col 1',df.groupby('col 1').cumcount()])['col 2']
.unstack()
.diff(axis=1)
.iloc[:, 1:]
.apply(lambda x: x.dt.days)
.add_prefix('diff_')
.reset_index())
print (df)
col 1 diff_1 diff_2 diff_3
0 A 2 3.0 1.0
1 B 6 NaN NaN
2 C 5 NaN NaN
Or use DataFrameGroupBy.diff with counter for new columns by DataFrame.assign, reshape by DataFrame.pivot and remove NaNs by c2 with DataFrame.dropna:
df['col 2'] = pd.to_datetime(df['col 2'])
df = (df.assign(g = df.groupby('col 1').cumcount(),
c1 = df.groupby('col 1')['col 2'].diff().dt.days)
.dropna(subset=['c1'])
.pivot('col 1','g','c1')
.add_prefix('diff_')
.rename_axis(None, axis=1)
.reset_index())
print (df)
col 1 diff_1 diff_2 diff_3
0 A 2.0 3.0 1.0
1 B 6.0 NaN NaN
2 C 5.0 NaN NaN
You can assign a cumcount number grouped by col 1, and pivot the table using that cumcount number.
Solution
df["col 2"] = pd.to_datetime(df["col 2"])
# 1. compute date difference in days using diff() and dt accessor
df["diff"] = df.groupby(["col 1"])["col 2"].diff().dt.days
# 2. assign cumcount for pivoting
df["cumcount"] = df.groupby("col 1").cumcount()
# 3. partial transpose, discarding the first difference in nan
df2 = df[["col 1", "diff", "cumcount"]]\
.pivot(index="col 1", columns="cumcount")\
.drop(columns=[("diff", 0)])
Result
# replace column names for readability
df2.columns = [f"d{i+2}-d{i+1}" for i in range(len(df2.columns))]
print(df2)
d2-d1 d3-d2 d4-d3
col 1
A 2.0 3.0 1.0
B 6.0 NaN NaN
C 5.0 NaN NaN
df after assing cumcount is like this
print(df)
col 1 col 2 diff cumcount
0 A 2020-07-13 NaN 0
1 A 2020-07-15 2.0 1
2 A 2020-07-18 3.0 2
3 A 2020-07-19 1.0 3
4 B 2020-07-13 NaN 0
5 B 2020-07-19 6.0 1
6 C 2020-07-13 NaN 0
7 C 2020-07-18 5.0 1

How to convert values of panda dataframe to columns

I have a dataset given below:
weekid type amount
1 A 10
1 B 20
1 C 30
1 D 40
1 F 50
2 A 70
2 E 80
2 B 100
I am trying to convert it to another panda frame based on total number of type values defined with:
import pandas as pd
import numpy as np
df=pd.read_csv(INPUT_FILE)
for type in df["type"].unique():
//todo
My aim is to get a data given below:
weekid type_A type_B type_C type_D type_E type_F
1 10 20 30 40 0 50
2 70 100 0 0 80 0
Is there any specific function that convert unique values as a column and fills the missing values as 0 for each weekId groups? I am wondering that how this conversion can be done efficiently?
You can use the following:
df = df.pivot(columns=['type'], values=['amount'])
df.fillna(0)
dfp.columns = dfp.columns.droplevel(0)
Given your input this yields:
type A B C D F
weekid
1 10.0 20.0 30.0 40.0 50.0
2 70.0 80.0 100.0 0.0 0.0

how to update rows based on previous row of dataframe python

I have a time series data given below:
date product price amount
11/01/2019 A 10 20
11/02/2019 A 10 20
11/03/2019 A 25 15
11/04/2019 C 40 50
11/05/2019 C 50 60
I have a high dimensional data, and I have just added the simplified version with two columns {price, amount}. I am trying to transform it relatively based on time index illustrated below:
date product price amount
11/01/2019 A NaN NaN
11/02/2019 A 0 0
11/03/2019 A 15 -5
11/04/2019 C NaN NaN
11/05/2019 C 10 10
I am trying to get relative changes of each product based on time indexes. If previous date does not exist for a specified product, I am adding "NaN".
Can you please tell me is there any function to do this?
Group by product and use .diff()
df[["price", "amount"]] = df.groupby("product")[["price", "amount"]].diff()
output :
date product price amount
0 2019-11-01 A NaN NaN
1 2019-11-02 A 0.0 0.0
2 2019-11-03 A 15.0 -5.0
3 2019-11-04 C NaN NaN
4 2019-11-05 C 10.0 10.0

Pandas print missing value column names and count only

I am using the following code to print the missing value count and the column names.
#Looking for missing data and then handling it accordingly
def find_missing(data):
# number of missing values
count_missing = data_final.isnull().sum().values
# total records
total = data_final.shape[0]
# percentage of missing
ratio_missing = count_missing/total
# return a dataframe to show: feature name, # of missing and % of missing
return pd.DataFrame(data={'missing_count':count_missing, 'missing_ratio':ratio_missing},
index=data.columns.values)
find_missing(data_final).head(5)
What I want to do is to only print those columns where there is a missing value as I have a huge data set of about 150 columns.
The data set looks like this
A B C D
123 ABC X Y
123 ABC X Y
NaN ABC NaN NaN
123 ABC NaN NaN
245 ABC NaN NaN
345 ABC NaN NaN
In the output I would just want to see :
missing_count missing_ratio
C 4 0.66
D 4 0.66
and not the columns A and B as there are no missing values there
Use DataFrame.isna with DataFrame.sum
to count by columns. We can also use DataFrame.isnull instead DataFrame.isna.
new_df = (df.isna()
.sum()
.to_frame('missing_count')
.assign(missing_ratio = lambda x: x['missing_count']/len(df))
.loc[df.isna().any()] )
print(new_df)
We can also use pd.concat instead DataFrame.assign
count = df.isna().sum()
new_df = (pd.concat([count.rename('missing_count'),
count.div(len(df))
.rename('missing_ratio')],axis = 1)
.loc[count.ne(0)])
Output
missing_count missing_ratio
A 1 0.166667
C 4 0.666667
D 4 0.666667
IIUC, we can assign the missing and total count to two variables do some basic math and assign back to a df.
a = df.isnull().sum(axis=0)
b = np.round(df.isnull().sum(axis=0) / df.fillna(0).count(axis=0),2)
missing_df = pd.DataFrame({'missing_vals' : a,
'missing_ratio' : b})
print(missing_df)
missing_vals ratio
A 1 0.17
B 0 0.00
C 4 0.67
D 4 0.67
you can filter out columns that don't have any missing vals
missing_df = missing_df[missing_df.missing_vals.ne(0)]
print(missing_df)
missing_vals ratio
A 1 0.17
C 4 0.67
D 4 0.67
You can also use concat:
s = df.isnull().sum()
result = pd.concat([s,s/len(df)],1)
result.columns = ["missing_count","missing_ratio"]
print (result)
missing_count missing_ratio
A 1 0.166667
B 0 0.000000
C 4 0.666667
D 4 0.666667

Iterate over rows in a data frame create a new column then adding more columns based on the new column

I have a data frame as below:
Date Quantity
2019-04-25 100
2019-04-26 148
2019-04-27 124
The output that I need is to take the quantity difference between two next dates and average over 24 hours and create 23 columns with hourly quantity difference added to the column before such as below:
Date Quantity Hour-1 Hour-2 ....Hour-23
2019-04-25 100 102 104 .... 146
2019-04-26 148 147 146 .... 123
2019-04-27 124
I'm trying to iterate over a loop but it's not working ,my code is as below:
for i in df.index:
diff=(df.get_value(i+1,'Quantity')-df.get_value(i,'Quantity'))/24
for j in range(24):
df[i,[1+j]]=df.[i,[j]]*(1+diff)
I did some research but I have not found how to create columns like above iteratively. I hope you could help me. Thank you in advance.
IIUC using resample and interpolate, then we pivot the output
s=df.set_index('Date').resample('1 H').interpolate()
s=pd.pivot_table(s,index=s.index.date,columns=s.groupby(s.index.date).cumcount(),values=s,aggfunc='mean')
s.columns=s.columns.droplevel(0)
s
Out[93]:
0 1 2 3 ... 20 21 22 23
2019-04-25 100.0 102.0 104.0 106.0 ... 140.0 142.0 144.0 146.0
2019-04-26 148.0 147.0 146.0 145.0 ... 128.0 127.0 126.0 125.0
2019-04-27 124.0 NaN NaN NaN ... NaN NaN NaN NaN
[3 rows x 24 columns]
If I have understood the question correctly.
for loop approach:
list_of_values = []
for i,row in df.iterrows():
if i < len(df) - 2:
qty = row['Quantity']
qty_2 = df.at[i+1,'Quantity']
diff = (qty_2 - qty)/24
list_of_values.append(diff)
else:
list_of_values.append(0)
df['diff'] = list_of_values
Output:
Date Quantity diff
2019-04-25 100 2
2019-04-26 148 -1
2019-04-27 124 0
Now create the columns required.
i.e.
df['Hour-1'] = df['Quantity'] + df['diff']
df['Hour-2'] = df['Quantity'] + 2*df['diff']
.
.
.
.
There are other approaches which will work way better.

Resources