How to maintain the partition in spark? - apache-spark

I have a parquet folder partitioned by sensor_name and each sensors has same count of readings. When I read it using select, my dataframe looks like below,
sensor_name | reading
---------------|---------------
a | 0.0
b | 2.0
c | 1.0
a | 0.0
b | 0.0
c | 1.0
...
I want to do some transformation for each sensor (say multiply by 10) and then store it as a parquet folder with the same partitioning (i.e) partition by sensor_name.
When I run below, I realized spark does its own partitioning
df.write.format("parquet").mode("overwrite").save("path")
So, I changed like below to do partitioning and it was tremendously slow,
df.write.format("parquet").partitionBy("sensor_name").mode("overwrite").save("path")
Then I tried to repartition and it was better than before but still slow,
df.repartition("sensor_name").write.format("parquet").partitionBy("sensor_name").mode("overwrite").save("path")
Is there a way to tell Spark not to repartition it and honor my partition while doing select?

Is there a way to tell Spark not to repartition it and honor my partition while doing select?
There is none. If you need to have physical partition on the disk, you need to use partitionBy, unless you want read the individual partition data, enrich it and write it to that directory. You will need to do the combination of python code (I would do that in scala though) + pyspark api.
The code you are using the most efficient one and spark would optimize it. You may be seeing performance bottleneck either if you are running on standalone mode or having join operation which involves a shuffle

Related

Extract and analyze data from JSON - Hadoop vs Spark

I'm trying to learn the whole open source big data stack, and I've started with HDFS, Hadoop MapReduce and Spark. I'm more or less limited with MapReduce and Spark (SQL?) for "ETL", HDFS for storage, and no other limitation for other things.
I have a situation like this:
My Data Sources
Data Source 1 (DS1): Lots of data - totaling to around 1TB. I have IDs (let's call them ID1) inside each row - used as a key. Format: 1000s of JSON files.
Data Source 2 (DS2): Additional "metadata" for data source 1. I have IDs (let's call them ID2) inside each row - used as a key. Format: Single TXT file
Data Source 3 (DS3): Mapping between Data Source 1 and 2. Only pairs of ID1, ID2 in CSV files.
My workspace
I currently have a VM with enough data space, about 128GB of RAM and 16 CPUs to handle my problem (the whole project is a research for, not a production-use-thing). I have CentOS 7 and Cloudera 6.x installed. Currently, I'm using HDFS, MapReduce and Spark.
The task
I need only some attributes (ID and a few strings) from Data Source 1. My guess is that it comes to less than 10% in data size.
I need to connect ID1s from DS3 (pairs: ID1, ID2) to IDs in DS1 and ID2s from DS3 (pairs: ID1, ID2) to IDs in DS2.
I need to add attributes from DS2 (using "mapping" from the previous bullet) to my extracted attributes from DS1
I need to make some "queries", like:
Find the most used words by years
Find the most common words, used by a certain author
Find the most common words, used by a certain author, on a yearly basi
etc.
I need to visualize data (i.e. wordclouds, histograms, etc.) at the end.
My questions:
Which tool to use to extract data from JSON files the most efficient way? MapReduce or Spark (SQL?)?
I have arrays inside JSON. I know the explode function in Spark can transpose my data. But what is the best way to go here? Is it the best way to
extract IDs from DS1 and put exploded data next to them, and write them to new files? Or is it better to combine everything? How to achieve this - Hadoop, Spark?
My current idea was to create something like this:
Extract attributes needed (except arrays) from DS1 with Spark and write them to CSV files.
Extract attributes needed (exploded arrays only + IDs) from DS1 with Spark and write them to CSV files - each exploded attribute to own file(s).
This means I have extracted all the data I need, and I can easily connect them with only one ID. I then wanted to make queries for specific questions and run MapReduce jobs.
The question: Is this a good idea? If not, what can I do better? Should I insert data into a database? If yes, which one?
Thanks in advance!
Thanks for asking!! Being a BigData developer for last 1.5 years and having experience with both MR and Spark, I think I may guide you to the correct direction.
The final goals which you want to achieve can be obtained using both MapReduce and Spark. For visualization purpose you can use Apache Zeppelin, which can run on top of your final data.
Spark jobs are memory expensive jobs, i.e, the whole computation for spark jobs run on memory, i.e, RAM. Only the final result is written to the HDFS. On the other hand, MapReduce uses less amount of memory and used HDFS for writing intermittent stage results, thus making more I/O operations and more time consuming.
You can use Spark's Dataframe feature. You can directly load data to Dataframe from a structured data (it can be plaintext file also) which will help you to get the required data in a tabular format. You can write the Dataframe to a plaintext file, or you can store to a hive table from where you can visualize data. On the other hand, using MapReduce you will have to first store in Hive table, then write hive operations to manipulate data, and store final data to another hive table. Writing native MapReduce jobs can be very hectic so I would suggest to refrain from choosing that option.
At the end, I would suggest to use Spark as processing engine (128GB and 16 cores is enough for spark) to get your final result as soon as possible.

Spark Performance Issue vs Hive

I am working on a pipeline that will run daily. It includes joining 2 tables say x & y ( approx. 18 MB and 1.5 GB sizes respectively) and loading the output of the join to final table.
Following are the facts about the environment,
For table x:
Data size: 18 MB
Number of files in a partition : ~191
file type: parquet
For table y:
Data size: 1.5 GB
Number of files in a partition : ~3200
file type: parquet
Now the problem is:
Hive and Spark are giving same performance (time taken is same)
I tried different combination of resources for spark job.
e.g.:
executors:50 memory:20GB cores:5
executors:70 memory:20GB cores:5
executors:1 memory:20GB cores:5
All three combinations are giving same performance. I am not sure what I am missing here.
I also tried broadcasting the small table 'x' so as to avoid shuffle while joining but not much improvement in performance.
One key observations is:
70% of the execution time is consumed for reading the big table 'y' and I guess this is due to more number of files per partition.
I am not sure how hive is giving the same performance.
Kindly suggest.
I assume you are comparing Hive on MR vs Spark. Please let me know if it is not the case.Because Hive(on tez or spark) vs Spark Sql will not differ
vastly in terms of performance.
I think the main issue is that there are too many small files.
A lot of CPU and time is consumed in the I/O itself, hence you can't experience the processing power of Spark.
My advice is to coalesce the spark dataframes immedietely after reading the parquet files. Please coalesce the 'x' dataframe into single partition and 'y'
dataframe into 6-7 partitions.
After doing the above, please perform the join(broadcastHashJoin).

Why Spark create less partitions than the number of files whem reading from S3

I'm using Spark 2.3.1.
I have a job that reads 5.000 small parquet files into s3.
When I do a mapPartitions followed by a collect, only 278 tasks are used (I would have expected 5000). Why ?
Spark is grouping multiple files into each partition due to their small size. You should see as much when you print out the partitions.
Example (Scala):
val df = spark.read.parquet("/path/to/files")
df.rdd.partitions.foreach(println)
If you want to use 5,000 task you could do a repartition transformation.
Quote from the docs about repartition:
Reshuffle the data in the RDD randomly to create either more or fewer
partitions and balance it across them. This always shuffles all data
over the network.
I recommend you take a look at the RDD Programming Guide. Remember that shuffle is an expensive operation.

Spark very slow performance with wide dataset

I have a small parquet file (7.67 MB) in HDFS, compressed with snappy. The file has 1300 rows and 10500 columns, all double values. When I create a data frame from the parquet file and perform a simple operation like count, it takes 18 seconds.
scala> val df = spark.read.format("parquet").load("/path/to/parquet/file")
df: org.apache.spark.sql.DataFrame = [column0_0: double, column1_1: double ... 10498 more fields]
scala> df.registerTempTable("table")
scala> spark.time(sql("select count(1) from table").show)
+--------+
|count(1)|
+--------+
| 1300|
+--------+
Time taken: 18402 ms
Can anything be done to improve performance of wide files?
Hey Glad you are here on the community,
Count is a lazy operation.Count,Show all these operations are costly in spark as they run over each and every record so using them will always take a lot of time instead you can write the results back to a file or database to make it fast, if you want to check out the result you can use DF.printSchema()
A simple way to check if a dataframe has rows, is to do a Try(df.head). If Success, then there's at least one row in the dataframe. If Failure, then the dataframe is empty.
When operating on the data frame, you may want to consider selecting only those columns that are of interest to you (i.e. df.select(columns...)) before performing any aggregation. This may trim down the size of your set considerably. Also, if any filtering needs to be done, do that first as well.
I find this answer which may be helpful to you.
Spark SQL is not suitable to process wide data (column number > 1K). If it's possible, you can use vector or map column to solve this problem.

What is an optimized way of joining large tables in Spark SQL

I have a need of joining tables using Spark SQL or Dataframe API. Need to know what would be optimized way of achieving it.
Scenario is:
All data is present in Hive in ORC format (Base Dataframe and Reference files).
I need to join one Base file (Dataframe) read from Hive with 11-13 other reference file to create a big in-memory structure (400 columns) (around 1 TB in size)
What can be best approach to achieve this? Please share your experience if some one has encounter similar problem.
My default advice on how to optimize joins is:
Use a broadcast join if you can (see this notebook). From your question it seems your tables are large and a broadcast join is not an option.
Consider using a very large cluster (it's cheaper that you may think). $250 right now (6/2016) buys about 24 hours of 800 cores with 6Tb RAM and many SSDs on the EC2 spot instance market. When thinking about total cost of a big data solution, I find that humans tend to substantially undervalue their time.
Use the same partitioner. See this question for information on co-grouped joins.
If the data is huge and/or your clusters cannot grow such that even (3) above leads to OOM, use a two-pass approach. First, re-partition the data and persist using partitioned tables (dataframe.write.partitionBy()). Then, join sub-partitions serially in a loop, "appending" to the same final result table.
Side note: I say "appending" above because in production I never use SaveMode.Append. It is not idempotent and that's a dangerous thing. I use SaveMode.Overwrite deep into the subtree of a partitioned table tree structure. Prior to 2.0.0 and 1.6.2 you'll have to delete _SUCCESS or metadata files or dynamic partition discovery will choke.
Hope this helps.
Spark uses SortMerge joins to join large table. It consists of hashing each row on both table and shuffle the rows with the same hash into the same partition. There the keys are sorted on both side and the sortMerge algorithm is applied. That's the best approach as far as I know.
To drastically speed up your sortMerges, write your large datasets as a Hive table with pre-bucketing and pre-sorting option (same number of partitions) instead of flat parquet dataset.
tableA
.repartition(2200, $"A", $"B")
.write
.bucketBy(2200, "A", "B")
.sortBy("A", "B")
.mode("overwrite")
.format("parquet")
.saveAsTable("my_db.table_a")
tableb
.repartition(2200, $"A", $"B")
.write
.bucketBy(2200, "A", "B")
.sortBy("A", "B")
.mode("overwrite")
.format("parquet")
.saveAsTable("my_db.table_b")
The overhead cost of writing pre-bucketed/pre-sorted table is modest compared to the benefits.
The underlying dataset will still be parquet by default, but the Hive metastore (can be Glue metastore on AWS) will contain precious information about how the table is structured. Because all possible "joinable" rows are colocated, Spark won't shuffle the tables that are pre-bucketd (big savings!) and won't sort the rows within the partition of table that are pre-sorted.
val joined = tableA.join(tableB, Seq("A", "B"))
Look at the execution plan with and without pre-bucketing.
This will not only save you a lot of time during your joins, it will make it possible to run very large joins on relatively small cluster without OOM. At Amazon, we use that in prod most of the time (there are still a few cases where it is not required).
To know more about pre-bucketing/pre-sorting:
https://spark.apache.org/docs/latest/sql-data-sources-hive-tables.html
https://data-flair.training/blogs/bucketing-in-hive/
https://mapr.com/blog/tips-and-best-practices-to-take-advantage-of-spark-2-x/
https://databricks.com/session/hive-bucketing-in-apache-spark
Partition the source use hash partitions or range partitions or you can write custom partitions if you know better about the joining fields. Partition will help to avoid repartition during joins as spark data from same partition across tables will exist in same location.
ORC will definitely help the cause.
IF this is still causing spill, try using tachyon which will be faster than disk

Resources