loop to check for issues - python-3.x

i have this small program to assign issues to me, it works great on pycharm but when i compile it to exe with pyintaller it closes after the first run, ignoring the time.sleep and running again creating a loop to check for issues every 5 seconds.
why is that? how can i fix it?
import time
import winsound
from jira import JIRA
global lst_ignore
issue_var = ""
lst_ignore = []
def jira_login():
global user,token
user = 'user#cloud.com'
token = 'kj432hj43214YMzCyMLOe7682'
try:
options = {'server': 'https://cloud.atlassian.net'}
global jira
jira = JIRA(options=options, basic_auth=(user, token))
except Exception as e:
jira = ""
if '401' in str(e):
print("Login to JIRA failed. Check your username and password",e)
return jira
def check_issue():
jira_login()
size = 100000
start = 0 * 100000
search_query = 'status not in (Done, Closed,Canceled) and assignee is EMPTY and project = "Success" and reporter not in (57f778:f48131cb-b67d-43c7-b30d-2b58d98bd077)'
issues = jira.search_issues(search_query, start, size)
for issue in issues:
if issue not in lst_ignore:
winsound.Beep(2000, 1000)
issue.update(assignee={'accountId': '60f1d072a0de61930ad83770'})
print(issue, " : assinged to you!")
lst_ignore.append(issue)
def check():
check_issue()
time.sleep(5)
check()
if __name__ == '__main__':
check()

NEW ANSWER:___________________________________________________
(New info obtained from comment) If it says you don't have the module when running from the console, but it does from Pycharm, you probably have 2 different Interpreters. There are two steps you must take.
Using the terminal run: pip install jira
If it says it is already installed, uninstall using pip, and then reinstall.
Good Luck!
OLD ANSWER:____________________________________________________
It is hard to say. One thing I can tell you is that a recursive function is almost never a good idea.
So instead of:
def check():
check_issue()
time.sleep(5)
check()
if __name__ == '__main__':
check()
Try the following aproach:
RUNNING = True
def main():
while RUNNING:
check_issue()
time.sleep(5)
if __name__ == '__main__':
main()
After that you can implement that if some condition is met, it wil change the RUNNING constant to exit the program. Or, if it is a console-run program, then just use a keyboard-interrupt

Related

Invalid command name error after destroying window in Tkinter

I am using CustomTkinter Ui library to create my school project. I have a login system that destroys the current window and creates a new window when the login is successful. However, it gives the following error.
invalid command name "140374651695040check_dpi_scaling"
while executing
"140374651695040check_dpi_scaling"
("after" script)
invalid command name "140374651691712click_animation"
while executing
"140374651691712click_animation"
("after" script)
invalid command name "140374651695744update"
while executing
"140374651695744update"
("after" script)
My code for login is
def login(self):
con=sqlite3.connect(database=r'ims.db')
cur=con.cursor()
try:
if self.uid.get()=="" or self.password.get()=="":
messagebox.showerror("Error","All fields are required",parent=self.root)
else:
cur.execute("select utype,uid from user where uid=? AND pass=?",(self.uid.get(),self.password.get()))
user=cur.fetchone()
uid=user[1]
if user==None:
messagebox.showerror("Error","Invalid username/password",parent=self.root)
elif user[0]=='Admin':
self.root.destroy()
obj=Admin(uid)
obj.mainloop()
else:
self.root.destroy()
obj=User(uid)
obj.mainloop()
except Exception as ex:
messagebox.showerror("Error",f'Error due to : {str(ex)}',parent=self.root)
I know this error happens because even though the window is destroyed different methods are still running. I had similar problem in my previous project which I fixed using after_cancel() but that time method that was running was function I had made so I knew where it was so It was easy to fix. But this time I don't know how to fix this issue, I think this issue is due to the method of CustomTkinter running even after destroying the window. Also, I am sorry for my English if you are not sure about mu qwery ask me, I will do my best to explain it.
I tried this solution but it didn't work.
I had a similar problem recently that was solved by using self.root.quit() instead of destroy()
E.G.:
try:
if self.uid.get() == "" or self.password.get() == "":
messagebox.showerror(
"Error",
"All fields are required",
parent=self.root
)
else:
cur.execute(
"select utype,uid from user where uid=? AND pass=?",
(self.uid.get(), self.password.get())
)
user = cur.fetchone()
uid = user[1]
if user is None: # editorial - use 'is' when comparing with 'None'
messagebox.showerror(
"Error","Invalid username/password",
parent=self.root
)
elif user[0] == 'Admin':
self.root.quit() # change here...
obj = Admin(uid)
obj.mainloop()
else:
self.root.quit() # ...and here
obj = User(uid)
obj.mainloop()

Is there a method in Python to "check" if a textfile has been modified or appended? [duplicate]

I have a log file being written by another process which I want to watch for changes. Each time a change occurs I'd like to read the new data in to do some processing on it.
What's the best way to do this? I was hoping there'd be some sort of hook from the PyWin32 library. I've found the win32file.FindNextChangeNotification function but have no idea how to ask it to watch a specific file.
If anyone's done anything like this I'd be really grateful to hear how...
[Edit] I should have mentioned that I was after a solution that doesn't require polling.
[Edit] Curses! It seems this doesn't work over a mapped network drive. I'm guessing windows doesn't 'hear' any updates to the file the way it does on a local disk.
Did you try using Watchdog?
Python API library and shell utilities to monitor file system events.
Directory monitoring made easy with
A cross-platform API.
A shell tool to run commands in response to directory changes.
Get started quickly with a simple example in Quickstart...
If polling is good enough for you, I'd just watch if the "modified time" file stat changes. To read it:
os.stat(filename).st_mtime
(Also note that the Windows native change event solution does not work in all circumstances, e.g. on network drives.)
import os
class Monkey(object):
def __init__(self):
self._cached_stamp = 0
self.filename = '/path/to/file'
def ook(self):
stamp = os.stat(self.filename).st_mtime
if stamp != self._cached_stamp:
self._cached_stamp = stamp
# File has changed, so do something...
If you want a multiplatform solution, then check QFileSystemWatcher.
Here an example code (not sanitized):
from PyQt4 import QtCore
#QtCore.pyqtSlot(str)
def directory_changed(path):
print('Directory Changed!!!')
#QtCore.pyqtSlot(str)
def file_changed(path):
print('File Changed!!!')
fs_watcher = QtCore.QFileSystemWatcher(['/path/to/files_1', '/path/to/files_2', '/path/to/files_3'])
fs_watcher.connect(fs_watcher, QtCore.SIGNAL('directoryChanged(QString)'), directory_changed)
fs_watcher.connect(fs_watcher, QtCore.SIGNAL('fileChanged(QString)'), file_changed)
It should not work on windows (maybe with cygwin ?), but for unix user, you should use the "fcntl" system call. Here is an example in Python. It's mostly the same code if you need to write it in C (same function names)
import time
import fcntl
import os
import signal
FNAME = "/HOME/TOTO/FILETOWATCH"
def handler(signum, frame):
print "File %s modified" % (FNAME,)
signal.signal(signal.SIGIO, handler)
fd = os.open(FNAME, os.O_RDONLY)
fcntl.fcntl(fd, fcntl.F_SETSIG, 0)
fcntl.fcntl(fd, fcntl.F_NOTIFY,
fcntl.DN_MODIFY | fcntl.DN_CREATE | fcntl.DN_MULTISHOT)
while True:
time.sleep(10000)
Check out pyinotify.
inotify replaces dnotify (from an earlier answer) in newer linuxes and allows file-level rather than directory-level monitoring.
For watching a single file with polling, and minimal dependencies, here is a fully fleshed-out example, based on answer from Deestan (above):
import os
import sys
import time
class Watcher(object):
running = True
refresh_delay_secs = 1
# Constructor
def __init__(self, watch_file, call_func_on_change=None, *args, **kwargs):
self._cached_stamp = 0
self.filename = watch_file
self.call_func_on_change = call_func_on_change
self.args = args
self.kwargs = kwargs
# Look for changes
def look(self):
stamp = os.stat(self.filename).st_mtime
if stamp != self._cached_stamp:
self._cached_stamp = stamp
# File has changed, so do something...
print('File changed')
if self.call_func_on_change is not None:
self.call_func_on_change(*self.args, **self.kwargs)
# Keep watching in a loop
def watch(self):
while self.running:
try:
# Look for changes
time.sleep(self.refresh_delay_secs)
self.look()
except KeyboardInterrupt:
print('\nDone')
break
except FileNotFoundError:
# Action on file not found
pass
except:
print('Unhandled error: %s' % sys.exc_info()[0])
# Call this function each time a change happens
def custom_action(text):
print(text)
watch_file = 'my_file.txt'
# watcher = Watcher(watch_file) # simple
watcher = Watcher(watch_file, custom_action, text='yes, changed') # also call custom action function
watcher.watch() # start the watch going
Well after a bit of hacking of Tim Golden's script, I have the following which seems to work quite well:
import os
import win32file
import win32con
path_to_watch = "." # look at the current directory
file_to_watch = "test.txt" # look for changes to a file called test.txt
def ProcessNewData( newData ):
print "Text added: %s"%newData
# Set up the bits we'll need for output
ACTIONS = {
1 : "Created",
2 : "Deleted",
3 : "Updated",
4 : "Renamed from something",
5 : "Renamed to something"
}
FILE_LIST_DIRECTORY = 0x0001
hDir = win32file.CreateFile (
path_to_watch,
FILE_LIST_DIRECTORY,
win32con.FILE_SHARE_READ | win32con.FILE_SHARE_WRITE,
None,
win32con.OPEN_EXISTING,
win32con.FILE_FLAG_BACKUP_SEMANTICS,
None
)
# Open the file we're interested in
a = open(file_to_watch, "r")
# Throw away any exising log data
a.read()
# Wait for new data and call ProcessNewData for each new chunk that's written
while 1:
# Wait for a change to occur
results = win32file.ReadDirectoryChangesW (
hDir,
1024,
False,
win32con.FILE_NOTIFY_CHANGE_LAST_WRITE,
None,
None
)
# For each change, check to see if it's updating the file we're interested in
for action, file in results:
full_filename = os.path.join (path_to_watch, file)
#print file, ACTIONS.get (action, "Unknown")
if file == file_to_watch:
newText = a.read()
if newText != "":
ProcessNewData( newText )
It could probably do with a load more error checking, but for simply watching a log file and doing some processing on it before spitting it out to the screen, this works well.
Thanks everyone for your input - great stuff!
Check my answer to a similar question. You could try the same loop in Python. This page suggests:
import time
while 1:
where = file.tell()
line = file.readline()
if not line:
time.sleep(1)
file.seek(where)
else:
print line, # already has newline
Also see the question tail() a file with Python.
This is another modification of Tim Goldan's script that runs on unix types and adds a simple watcher for file modification by using a dict (file=>time).
usage: whateverName.py path_to_dir_to_watch
#!/usr/bin/env python
import os, sys, time
def files_to_timestamp(path):
files = [os.path.join(path, f) for f in os.listdir(path)]
return dict ([(f, os.path.getmtime(f)) for f in files])
if __name__ == "__main__":
path_to_watch = sys.argv[1]
print('Watching {}..'.format(path_to_watch))
before = files_to_timestamp(path_to_watch)
while 1:
time.sleep (2)
after = files_to_timestamp(path_to_watch)
added = [f for f in after.keys() if not f in before.keys()]
removed = [f for f in before.keys() if not f in after.keys()]
modified = []
for f in before.keys():
if not f in removed:
if os.path.getmtime(f) != before.get(f):
modified.append(f)
if added: print('Added: {}'.format(', '.join(added)))
if removed: print('Removed: {}'.format(', '.join(removed)))
if modified: print('Modified: {}'.format(', '.join(modified)))
before = after
Here is a simplified version of Kender's code that appears to do the same trick and does not import the entire file:
# Check file for new data.
import time
f = open(r'c:\temp\test.txt', 'r')
while True:
line = f.readline()
if not line:
time.sleep(1)
print 'Nothing New'
else:
print 'Call Function: ', line
Well, since you are using Python, you can just open a file and keep reading lines from it.
f = open('file.log')
If the line read is not empty, you process it.
line = f.readline()
if line:
// Do what you want with the line
You may be missing that it is ok to keep calling readline at the EOF. It will just keep returning an empty string in this case. And when something is appended to the log file, the reading will continue from where it stopped, as you need.
If you are looking for a solution that uses events, or a particular library, please specify this in your question. Otherwise, I think this solution is just fine.
Simplest solution for me is using watchdog's tool watchmedo
From https://pypi.python.org/pypi/watchdog I now have a process that looks up the sql files in a directory and executes them if necessary.
watchmedo shell-command \
--patterns="*.sql" \
--recursive \
--command='~/Desktop/load_files_into_mysql_database.sh' \
.
As you can see in Tim Golden's article, pointed by Horst Gutmann, WIN32 is relatively complex and watches directories, not a single file.
I'd like to suggest you look into IronPython, which is a .NET python implementation.
With IronPython you can use all the .NET functionality - including
System.IO.FileSystemWatcher
Which handles single files with a simple Event interface.
This is an example of checking a file for changes. One that may not be the best way of doing it, but it sure is a short way.
Handy tool for restarting application when changes have been made to the source. I made this when playing with pygame so I can see effects take place immediately after file save.
When used in pygame make sure the stuff in the 'while' loop is placed in your game loop aka update or whatever. Otherwise your application will get stuck in an infinite loop and you will not see your game updating.
file_size_stored = os.stat('neuron.py').st_size
while True:
try:
file_size_current = os.stat('neuron.py').st_size
if file_size_stored != file_size_current:
restart_program()
except:
pass
In case you wanted the restart code which I found on the web. Here it is. (Not relevant to the question, though it could come in handy)
def restart_program(): #restart application
python = sys.executable
os.execl(python, python, * sys.argv)
Have fun making electrons do what you want them to do.
Seems that no one has posted fswatch. It is a cross-platform file system watcher. Just install it, run it and follow the prompts.
I've used it with python and golang programs and it just works.
ACTIONS = {
1 : "Created",
2 : "Deleted",
3 : "Updated",
4 : "Renamed from something",
5 : "Renamed to something"
}
FILE_LIST_DIRECTORY = 0x0001
class myThread (threading.Thread):
def __init__(self, threadID, fileName, directory, origin):
threading.Thread.__init__(self)
self.threadID = threadID
self.fileName = fileName
self.daemon = True
self.dir = directory
self.originalFile = origin
def run(self):
startMonitor(self.fileName, self.dir, self.originalFile)
def startMonitor(fileMonitoring,dirPath,originalFile):
hDir = win32file.CreateFile (
dirPath,
FILE_LIST_DIRECTORY,
win32con.FILE_SHARE_READ | win32con.FILE_SHARE_WRITE,
None,
win32con.OPEN_EXISTING,
win32con.FILE_FLAG_BACKUP_SEMANTICS,
None
)
# Wait for new data and call ProcessNewData for each new chunk that's
# written
while 1:
# Wait for a change to occur
results = win32file.ReadDirectoryChangesW (
hDir,
1024,
False,
win32con.FILE_NOTIFY_CHANGE_LAST_WRITE,
None,
None
)
# For each change, check to see if it's updating the file we're
# interested in
for action, file_M in results:
full_filename = os.path.join (dirPath, file_M)
#print file, ACTIONS.get (action, "Unknown")
if len(full_filename) == len(fileMonitoring) and action == 3:
#copy to main file
...
Since I have it installed globally, my favorite approach is to use nodemon. If your source code is in src, and your entry point is src/app.py, then it's as easy as:
nodemon -w 'src/**' -e py,html --exec python src/app.py
... where -e py,html lets you control what file types to watch for changes.
Here's an example geared toward watching input files that write no more than one line per second but usually a lot less. The goal is to append the last line (most recent write) to the specified output file. I've copied this from one of my projects and just deleted all the irrelevant lines. You'll have to fill in or change the missing symbols.
from PyQt5.QtCore import QFileSystemWatcher, QSettings, QThread
from ui_main_window import Ui_MainWindow # Qt Creator gen'd
class MainWindow(QMainWindow, Ui_MainWindow):
def __init__(self, parent=None):
QMainWindow.__init__(self, parent)
Ui_MainWindow.__init__(self)
self._fileWatcher = QFileSystemWatcher()
self._fileWatcher.fileChanged.connect(self.fileChanged)
def fileChanged(self, filepath):
QThread.msleep(300) # Reqd on some machines, give chance for write to complete
# ^^ About to test this, may need more sophisticated solution
with open(filepath) as file:
lastLine = list(file)[-1]
destPath = self._filemap[filepath]['dest file']
with open(destPath, 'a') as out_file: # a= append
out_file.writelines([lastLine])
Of course, the encompassing QMainWindow class is not strictly required, ie. you can use QFileSystemWatcher alone.
Just to put this out there since no one mentioned it: there's a Python module in the Standard Library named filecmp which has this cmp() function that compares two files.
Just make sure you don't do from filecmp import cmp to not overshadow the built-in cmp() function in Python 2.x. That's okay in Python 3.x, though, since there's no such built-in cmp() function anymore.
Anyway, this is how its use looks like:
import filecmp
filecmp.cmp(path_to_file_1, path_to_file_2, shallow=True)
The argument shallow defaults to True. If the argument's value is True, then only the metadata of the files are compared; however, if the argument's value is False, then the contents of the files are compared.
Maybe this information will be useful to someone.
watchfiles (https://github.com/samuelcolvin/watchfiles) is a Python API and CLI that uses the Notify (https://github.com/notify-rs/notify) library written in Rust.
The rust implementation currently (2022-10-09) supports:
Linux / Android: inotify
macOS: FSEvents or kqueue, see features
Windows: ReadDirectoryChangesW
FreeBSD / NetBSD / OpenBSD / DragonflyBSD: kqueue
All platforms: polling
Binaries available on PyPI (https://pypi.org/project/watchfiles/) and conda-forge (https://github.com/conda-forge/watchfiles-feedstock).
You can also use a simple library called repyt, here is an example:
repyt ./app.py
related #4Oh4 solution a smooth change for a list of files to watch;
import os
import sys
import time
class Watcher(object):
running = True
refresh_delay_secs = 1
# Constructor
def __init__(self, watch_files, call_func_on_change=None, *args, **kwargs):
self._cached_stamp = 0
self._cached_stamp_files = {}
self.filenames = watch_files
self.call_func_on_change = call_func_on_change
self.args = args
self.kwargs = kwargs
# Look for changes
def look(self):
for file in self.filenames:
stamp = os.stat(file).st_mtime
if not file in self._cached_stamp_files:
self._cached_stamp_files[file] = 0
if stamp != self._cached_stamp_files[file]:
self._cached_stamp_files[file] = stamp
# File has changed, so do something...
file_to_read = open(file, 'r')
value = file_to_read.read()
print("value from file", value)
file_to_read.seek(0)
if self.call_func_on_change is not None:
self.call_func_on_change(*self.args, **self.kwargs)
# Keep watching in a loop
def watch(self):
while self.running:
try:
# Look for changes
time.sleep(self.refresh_delay_secs)
self.look()
except KeyboardInterrupt:
print('\nDone')
break
except FileNotFoundError:
# Action on file not found
pass
except Exception as e:
print(e)
print('Unhandled error: %s' % sys.exc_info()[0])
# Call this function each time a change happens
def custom_action(text):
print(text)
# pass
watch_files = ['/Users/mexekanez/my_file.txt', '/Users/mexekanez/my_file1.txt']
# watcher = Watcher(watch_file) # simple
if __name__ == "__main__":
watcher = Watcher(watch_files, custom_action, text='yes, changed') # also call custom action function
watcher.watch() # start the watch going
The best and simplest solution is to use pygtail:
https://pypi.python.org/pypi/pygtail
from pygtail import Pygtail
import sys
while True:
for line in Pygtail("some.log"):
sys.stdout.write(line)
import inotify.adapters
from datetime import datetime
LOG_FILE='/var/log/mysql/server_audit.log'
def main():
start_time = datetime.now()
while True:
i = inotify.adapters.Inotify()
i.add_watch(LOG_FILE)
for event in i.event_gen(yield_nones=False):
break
del i
with open(LOG_FILE, 'r') as f:
for line in f:
entry = line.split(',')
entry_time = datetime.strptime(entry[0],
'%Y%m%d %H:%M:%S')
if entry_time > start_time:
start_time = entry_time
print(entry)
if __name__ == '__main__':
main()
The easiest solution would get the two instances of the same file after an interval and Compare them. You Could try something like this
while True:
# Capturing the two instances models.py after certain interval of time
print("Looking for changes in " + app_name.capitalize() + " models.py\nPress 'CTRL + C' to stop the program")
with open(app_name.capitalize() + '/filename', 'r+') as app_models_file:
filename_content = app_models_file.read()
time.sleep(5)
with open(app_name.capitalize() + '/filename', 'r+') as app_models_file_1:
filename_content_1 = app_models_file_1.read()
# Comparing models.py after certain interval of time
if filename_content == filename_content_1:
pass
else:
print("You made a change in " + app_name.capitalize() + " filename.\n")
cmd = str(input("Do something with the file?(y/n):"))
if cmd == 'y':
# Do Something
elif cmd == 'n':
# pass or do something
else:
print("Invalid input")
If you're using windows, create this POLL.CMD file
#echo off
:top
xcopy /m /y %1 %2 | find /v "File(s) copied"
timeout /T 1 > nul
goto :top
then you can type "poll dir1 dir2" and it will copy all the files from dir1 to dir2 and check for updates once per second.
The "find" is optional, just to make the console less noisy.
This is not recursive. Maybe you could make it recursive using /e on the xcopy.
I don't know any Windows specific function. You could try getting the MD5 hash of the file every second/minute/hour (depends on how fast you need it) and compare it to the last hash. When it differs you know the file has been changed and you read out the newest lines.
I'd try something like this.
try:
f = open(filePath)
except IOError:
print "No such file: %s" % filePath
raw_input("Press Enter to close window")
try:
lines = f.readlines()
while True:
line = f.readline()
try:
if not line:
time.sleep(1)
else:
functionThatAnalisesTheLine(line)
except Exception, e:
# handle the exception somehow (for example, log the trace) and raise the same exception again
raw_input("Press Enter to close window")
raise e
finally:
f.close()
The loop checks if there is a new line(s) since last time file was read - if there is, it's read and passed to the functionThatAnalisesTheLine function. If not, script waits 1 second and retries the process.

How to have my defined refresh function running in the background of my twisted server

I have a simple twisted TCP server running absolutely fine, it basically deals with database requests and displays the right things its just an echo client with a bunch of functions, the database that is being read also updates I have this refresh function to open the database and refresh it however if I add this to the message functions it'll take too long to respond as the refresh function takes around 6/7 seconds to complete, my initial idea was to have this function in a while loop and running constantly refreshing every 5/10 mins but after reading about the global interpreter lock its made me think that that isn't possible, any suggestions on how to run this function in the background of my code would be greatly appreciated
I've tried having it in a thread but it doesn't seem to run at all when I start the thread, I put it under the if name == 'main': function and no luck!
Here is my refresh function
def refreshit()
Application = win32com.client.Dispatch("Excel.Application")
Workbook = Application.Workbooks.open(database)
Workbook.RefreshAll()
Workbook.Save()
Application.Quit()
xlsx = pd.ExcelFile(database)
global datess
global refss
df = pd.read_excel(xlsx, sheet_name='Sheet1')
datess = df.groupby('documentDate')
refss = df.groupby('reference')
class Echo(Protocol):
global Picked_DFS
Picked_DFS = None
label = None
global errors
global picked
errors = []
picked = []
def dataReceived(self, data):
"""
As soon as any data is received, write it back.
"""
response = self.handle_message(data)
print('responding with this')
print(response)
self.transport.write(response)
def main():
f = Factory()
f.protocol = Echo
reactor.listenTCP(8000, f)
reactor.run()
if __name__ == '__main__':
main()
I had tried this to no avail
if __name__ == '__main__':
main()
thread = Thread(target = refreshit())
thread.start()
thread.join()
You have an important error on this line:
thread = Thread(target = refreshit())
Though you have not included the definition of refreshit (perhaps a function to consider renaming), I assume refreshit is a function that performs your refresh.
In this case, what you are doing here is calling refreshit and waiting for it to return a value. Then, the value it returns is used as the target of the Thread you create here. This is probably not what you meant. Instead:
thread = Thread(target = refreshit)
That is, refreshit itself is what you want the target of the thread to be.
You also need to be sure to sequence your operations so that everything gets to run concurrently:
if __name__ == '__main__':
# Start your worker/background thread.
thread = Thread(target = refreshit)
thread.start()
# Run Twisted
main()
# Cleanup/wait on your worker/background thread.
thread.join()
You may also just want to use Twisted's thread support instead of using the threading module directly (but this is not mandatory).
if __name__ == '__main__':
# Start your worker/background thread.
thread = Thread(target = refreshit)
thread.start()
# Run Twisted
main()
# Cleanup/wait on your worker/background thread.
thread.join()

on_fetch_item_resource returns nothing

I want to modify something with database hook, but I think on_fetch_item not working for me.
Here is my code:
def before_returning_contract(response):
print('About to return a contact')
if __name__ == '__main__':
app.on_fetched_item_contract += before_returning_contract
Bootstrap(app)
app.register_blueprint(eve_docs, url_prefix='/docs')
app.run(debug=True, host="127.0.0.1")
When I run it, (I mean when I go to 127.0.0.1:5000/contract/ObjID I didn't see print result in the console. I have just saw one time within 100 tries, but I never changed anything.

pyautogui locateonscreen not finding pop up

Im trying to automate a program, we use all the time:
import pyautogui, time
import PIL
input("Press Enter to start")
print("Starting program in 5 seconds")
time.sleep(5)
#open edgewise
pyautogui.hotkey("win")
pyautogui.typewrite("edgewise")
pyautogui.hotkey("Enter")
time.sleep(20)
print("Checking for error message")
a = pyautogui.locateOnScreen("ok.png")
while True:
if a == None:
print("Not Found")
break
else:
print("Found")
new0 = a[0]
new0 = new0 + 10
new1 = a[1]
new1 = new1 + 10
pyautogui.moveTo(new0,new1,duration=1)
pyautogui.click()
break
input("Finished")
So the idea of the program is that it opens the software, which during the startup it flashes up an error message (sometimes) which requires you to click ok.
Now, this program works if the program (edgewise) has already started and the error message is on-screen before I start the python script. I have even given it a sleep timer to make sure the program has opened correctly and is displaying the message in time
Any ideas
It seems that PYAutoGUI locateonscreen function only works when the program is already started, I tried to build my script to do everything including starting the application, but this causes issues.
Hope this helps others

Resources