Aws Aurora serverless v2 will not scale down to .5 ACU even though 0 connections - amazon-rds

I'm running a v2 instance and from the documentation aws states you should only be paying for resources that you are actually using. I have an instance than is most of the time at 0 connections but it never scales down under 2 ACUs. See images below for reference. I have the instance setup to scale between 0.5-16ACU. But it doesn't seem to matter the load it always stays at a baseline of 2ACUs.

I had to turn off the AI monitoring on the DB. Then restart the instance. This then started the db at the minimum.

I can confirm this behaviour but as yet can't explain it. We have three databases running, all with the same schema and with different ACU limits set. Our production and staging databases insist at near flatlines close to the max capacity allowed whilst one other behaves as we would expect and only shows an upscale when we actually send it load.
We have tried rebooting the instances but they immediately scale up and do not appear willing to scale down.
We have full support with AWS so will raise a ticket with them and should report back here if we get an explanation/solution

Related

Choosing the right EC2 instance for three NodeJS Applications

I'm running three MEAN stack programmes. Each application receives over 10,000 monthly users. Could you please assist me in finding an EC2 instance for my apps?
I've been using a "t3.large" instance with two vCPUs and eight gigabytes of RAM, but it costs $62 to $64 per month.
I need help deciding which EC2 instance to use for three Nodejs applications.
First check CloudWatch metrics for the current instances. Is CPU and memory usage consistent over time? Analysing the metrics could help you to decide whether you should select a smaller/bigger instance or not.
One way to avoid too unnecessary costs is to use auto scaling groups and load balancers. By using them and finding and applying proper settings, you could have always right amount of computing power for your applications.
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html
Depends on your applications. If your apps need more compute power or more memory or more storage? Deciding a server is similar to installing an app on system. Check what are basic requirements for it & then proceed to choose server.
If you have 10k+ monthly customers, think about using ALB so that traffic gets distributed evenly. Try caching to server some content if possible. Use unlimited burst mode of t3 servers if CPU keeps hitting 100%. Also, try to optimize code so that fewer resources are consumed. Once you are comfortable with ec2 choice, try to purchase saving plans or RIs for less cost.
Also, do monitor the servers & traffic using Cloudwatch agent, internet monitor etc features.

Azure Function Scaling way to many instances

We are using Azure functions and we have a few in one app service plan that seems to scale far to many instances. Often 10 or more. The cpu is 0 on most and < 1 on a couple. memory is only 40% used. It does have 500ms dependencies because some call api's in our datacenter and a table storage queue. Honestly its only a few thousand calls a day. It should run on one instance without any issues. Sometimes it scales down but it doesn't seem to correlate to load.
I don't want to force it to one instance, usage will grow over time.
Any way to tell in app insights why??? Or a way to be more granular in scaling?
*** EDIT ***
It's the queue for some reason. Still working on it.

Google Cloud Run not scaling as expected

I'm using Google Cloud Run to run a pretty basic Express / Node JS backend container. I receive fairly low number of requests per day, and only the occasional concurrent request.
However, I can see on my Cloud Run dashboard that Cloud Run sometimes scale up to 4 instances, most of the time to at least 2 instances. I know that my app load is so low that I'll pretty much never need more than 1 instance, so why is Cloud Run being so wasteful?
My settings is set as maximum 40 requests concurrently; minimum 0 containers and maximum 4 containers.
Container instance counts fluctuates substantially. Green line is idle containers and blue line is active containers.
My CPU usage is also very low:
You know your workload profile and the expected request. Cloud Run autoscaler does not. Therefore, it over provisions additional instances in case of traffic spike.
Of course, YOU know that will never happen, but IT doesn't.
Cloud Run is pretty well designed for average traffic. If you are at one extremity of this standard usage (very low traffic or very high, very spiky traffic), yes, the Cloud Run autoscaler provisioning model doesn't work so well.
However, what's the problem? You pay only when a request is processed on an instance. If there are over provisioned and not used instances, you won't pay them. It's a waste of money for Google, not for you.
Your only concern could be for the earth and the resource saving, and you have absolutely right.

'Unable to connect Net/http: TLS handshake timeout' — Why can't Kubectl connect to Azure Kubernetes server? (AKS)

My question (to MS and anyone else) is: Why is this issue occurring and what work around can be implemented by the users / customers themselves as opposed to by Microsoft Support?
There have obviously been 'a few' other question about this issue:
Managed Azure Kubernetes connection error
Can't contact our Azure-AKS kube - TLS handshake timeout
Azure Kubernetes: TLS handshake timeout (this one has some Microsoft feedback)
And multiple GitHub issues posted to the AKS repo:
https://github.com/Azure/AKS/issues/112
https://github.com/Azure/AKS/issues/124
https://github.com/Azure/AKS/issues/164
https://github.com/Azure/AKS/issues/177
https://github.com/Azure/AKS/issues/324
Plus a few twitter threads:
https://twitter.com/ternel/status/955871839305261057
TL;DR
Skip to workarounds in Answers below.
Current best solution is post a help ticket — and wait — or re-create your AKS cluster (maybe more than once, cross your fingers, see below...) but there should be something better. At least please grant the ability to let AKS preview customers, regardless of support tier, upgrade their support request severity for THIS specific issue.
You can also try scaling your Cluster (assuming that doesn't break your app).
What about GitHub?
Many of the above GitHub issues have been closed as resolved but the issue persists. Previously there was an announcements document regarding the problem but no such status updates are currently available even though the problem continues to present itself:
https://github.com/Azure/AKS/tree/master/annoucements
I am posting this as I have a few new tidbits that I haven't seen elsewhere and I am wondering if anyone has ideas as far as other potential options for working around the issue.
Affected VM / Node Resource Usage
The first piece I haven't seen mentioned elsewhere is Resource usage on the nodes / vms / instances that are being impacted by the above Kubectl 'Unable to connect to the server: net/http: TLS handshake timeout' issue.
Production Node Utilization
The node(s) on my impacted cluster look like this:
The drop in utilization and network io correlates strongly with both the increase in disk utilization AND the time period we began experiencing the issue.
The overall Node / VM utilization is generally flat prior to this chart for the previous 30 days with a few bumps relating to production site traffic / update pushes etc.
Metrics After Issue Mitigation (Added Postmortem)
To the above point, here are the metrics the same Node after Scaling up and then back down (which happened to alleviate our issue, but does not always work — see answers at bottom):
Notice the 'Dip' in CPU and Network? That's where the Net/http: TLS issue impacted us — and when the AKS Server was un-reachable from Kubectl. Seems like it wasn't talking to the VM / Node in addition to not responding to our requests.
As soon as we were back (scaled the # nodes up by one, and back down — see answers for workaround) the Metrics (CPU etc) went back to normal — and we could connect from Kubectl. This means we can probably create an Alarm off of this behavior (and I have a issue in asking about this on Azure DevOps side: https://github.com/Azure/AKS/issues/416)
Node Size Potentially Impacts Issue Frequency
Zimmergren over on GitHub indicates that he has less issues with larger instances than he did running bare bones smaller nodes. This makes sense to me and could indicate that the way the AKS servers divy up the workload (see next section) could be based on the size of the instances.
"The size of the nodes (e.g. D2, A4, etc) :)
I've experienced that when running A4 and up, my cluster is healther than if running A2, for example. (And I've got more than a dozen similar experiences with size combinations and cluster failures, unfortunately)." (https://github.com/Azure/AKS/issues/268#issuecomment-375715435)
Other Cluster size impact references:
giorgited (https://github.com/Azure/AKS/issues/268#issuecomment-376390692)
An AKS server responsible for more smaller Clusters may possibly get hit more often?
Existence of Multiple AKS Management 'Servers' in one Az Region
The next thing I haven't seen mentioned elsewhere is the fact that you can have multiple Clusters running side by side in the same Region where one Cluster (production for us in this case) gets hit with 'net/http: TLS handshake timeout' and the other is working fine and can be connected to normally via Kubectl (for us this is our identical staging environment).
The fact that users (Zimmergren etc above) seem to feel that the Node size impacts the likelihood that this issue will impact you also seems to indicate that node size may relate to the way the sub-region responsibilities are assigned to the sub-regional AKS management servers.
That could mean that re-creating your cluster with a different Cluster size would be more likely to place you on a different management server — alleviating the issue and reducing the likelihood that multiple re-creations would be necessary.
Staging Cluster Utilization
Both of our AKS Clusters are in U.S. East. As a reference to the above 'Production' Cluster metrics our 'Staging' Cluster (also U.S. East) resource utilization does not have the massive drop in CPU / Network IO — AND does not have the increase in disk etc. over the same period:
Identical Environments are Impacted Differently
Both of our Clusters are running identical ingresses, services, pods, containers so it is also unlikely that anything a user is doing causes this problem to crop up.
Re-creation is only SOMETIMES successful
The above existence of multiple AKS management server sub-regional responsibilities makes sense with the behavior described by other users on github (https://github.com/Azure/AKS/issues/112) where some users are able to re-create a cluster (which can then be contacted) while others re-create and still have issues.
Emergency could = Multiple Re-Creations
In an emergency (ie your production site... like ours... needs to be managed) you can PROBABLY just re-create until you get a working cluster that happens to land on a different AKS management server instance (one that is not impacted) but be aware that this may not happen on your first attempt — AKS cluster re-creation is not exactly instant.
That said...
Resources on the Impacted Nodes Continue to Function
All of the containers / ingresses / resources on our impacted VM appear to be working well and I don't have any alarms going off for up-time / resource monitoring (other than the utilization weirdness listed above in the graphs)
I want to know why this issue is occurring and what work around can be implemented by the users themselves as opposed to by Microsoft Support (currently have a ticket in). If you have an idea let me know.
Potential Hints at the Cause
https://github.com/Azure/AKS/issues/164#issuecomment-363613110
https://github.com/Azure/AKS/issues/164#issuecomment-365389154
Why no GKE?
I understand that Azure AKS is in preview and that a lot of people have moved to GKE because of this problem (). That said my Azure experience has been nothing but positive thus far and I would prefer to contribute a solution if at all possible.
And also... GKE occasionally faces something similar:
TLS handshake timeout with kubernetes in GKE
I would be interested to see if scaling the nodes on GKE also solved the problem over there.
Workaround 1 (May Not Work for Everyone)
An interesting solution (worked for me) to test is scaling the number of nodes in your cluster up, and then back down...
Log into the Azure Console — Kubernetes Service blade.
Scale your cluster up by 1 node.
Wait for scale to complete and attempt to connect (you should be able to).
Scale your cluster back down to the normal size to avoid cost increases.
Alternately you can (maybe) do this from the command line:
az aks scale --name <name-of-cluster> --node-count <new-number-of-nodes> --resource-group <name-of-cluster-resource-group>
Since it is a finicky issue and I used the web interface I am uncertain if the above is identical or would work.
Total time it took me ~2 minutes — for my situation that is MUCH better than re-creating / configuring a Cluster (potentially multiple times...)
That being Said....
Zimmergren brings up some good points that Scaling is not a true Solution:
"It worked sometimes, where the cluster self-healed a period after scaling. It failed sometimes with the same errors. I don't consider scaling a solution to this problem, as that causes other challenges depending on how things are set up. I wouldn't trust that routine for a GA workload, that's for sure. In the current preview, it's a bit wild west (and expected), and I'm happy to blow up the cluster and create a new one when this fails continuously." (https://github.com/Azure/AKS/issues/268#issuecomment-395299308)
Azure Support Feedback
Since I had a support ticket open at the time I ran into the above scaling solution I was able to get feedback (or rather a guess) on what the above might have worked, here's a paraphrased response:
"I know that scaling the cluster can sometimes help if you get into a state where the number of nodes is mismatched between “az aks show” and “kubectl get nodes”. This may be similar."
Workaround References:
GitHub user Scaled nodes from console and fixed the problem: https://github.com/Azure/AKS/issues/268#issuecomment-375722317
Workaround Didn't Work?
If this DOES NOT work for you, please post a comment below as I am going to try to keep an up to date list of how often the issue crops up, whether it resolves itself, and whether this solution works across Azure AKS users (looks like it doesn't work for everyone).
Users Scaling Up / Down DID NOT work for:
omgsarge (https://github.com/Azure/AKS/issues/112#issuecomment-395231681)
Zimmergren (https://github.com/Azure/AKS/issues/268#issuecomment-395299308)
sercand — scale operation itself failed — not sure if it would have impacted connectability (https://github.com/Azure/AKS/issues/268#issuecomment-395301296)
Scaling Up / Down DID work for:
Me
LohithChanda (https://github.com/Azure/AKS/issues/268#issuecomment-395207716)
Zimmergren (https://github.com/Azure/AKS/issues/268#issuecomment-395299308)
Email Azure AKS Specific Support
If after all the diagnosis you still suffer from this issue, please don't hesitate to send email to aks-help#service.microsoft.com
Adding another answer since this is now the Azure Support official solution when the above attempts do not work. I haven't experienced the issue in a while so I can't verify this one but it seems like it would make sense to me (based on previous experience).
Credit on this one / full thread found here (https://github.com/Azure/AKS/issues/14#issuecomment-424828690)
Check for Tunneling Issues
ssh to the agent node which running the tunnelfront pod
get tunnelfront logs: "docker ps" -> "docker logs "
"nslookup " whose fqdn can be get from above command -> if it resolves ip, which means dns works, then go to the following step
"ssh -vv azureuser# -p 9000" ->if port is working, go to the next step
"docker exec -it /bin/bash", type "ping google.com", if it is no response, which means tunnel front pod doesn't have external network, then do following step
restart kube-proxy, using "kubectl delete po -n kube-system", choose the kube-proxy which is runing on the same node with tunnelfront. customer can use "kubectl get po -n kube-system -o wide"
I feel like this particular work-around could PROBABLY be automated (for sure on Azure side but probably on the community side).
Email Azure AKS Specific Support
If after all the diagnosis you still suffer from this issue, please don't hesitate to send email to aks-help#service.microsoft.com
Workaround 2 Re-Create Cluster (Somewhat Obvious)
I am adding this one because there are some details to keep in mind and even though I touched on it in my original Question, that thing got long, so I am adding specific details on re-creation here.
Cluster Re-Creation Doesn't Always Work
Per the above in my original question there are multiple AKS Server instances that divide up responsibilities for a given Azure region (we think). Some, or all, of these can be impacted by this bug resulting in your Cluster being un-reachable via Kubectl.
That means that if you re-create your Cluster and it some how lands on the same AKS server, probably that new Cluster will ALSO not be reachable requiring...
Additional Re-creation Attempts
Probably re-creating multiple times will result in you eventually landing your new Cluster on one of the other AKS servers (which is working fine).
As far as I can tell I don't see any indication that ALL AKS servers get hit with this problem at once in a while (if ever).
Different Cluster Node Size
If you are in a pinch and want the highest possibly probability (we haven't confirmed this) that your re-creation lands on a different AKS management server — choose a different Node size when you create your new Cluster (see Node Size section of the initial Question above).
I have opened this ticket asking Azure DevOps whether or not the Node Size is ACTUALLY related to deciding which Clusters are administered by which AKS management servers: https://github.com/Azure/AKS/issues/416
Support Ticket Fix vs. Self Healing
Since there are a lot of users who indicate that the problem occasionally solves itself and just goes away I think that it is reasonable to guess that Support actually fixes the offending AKS server (which may result in other users having their Clusters fixed — 'Self Heal') as opposed to fixing the individual user's Cluster.
Creating Support Tickets
To me the above would likely mean that creating a Ticket is probably a good thing since it would fix other user Clusters experiencing the same issue — it might also be an argument for allowing support issue severity escalation for this specific issue.
I think this is also a decent indicator that maybe Azure support hasn't figured out how to fully alarm for the problem yet, in which case creation of a support ticket serves that purpose as well.
I also asked Azure DevOps whether they Alarm for the issue (based on my experience easily visualizing the issue based on CPU and Network IO metric changes) on their side: https://github.com/Azure/AKS/issues/416
If NOT (haven't heard back) then it makes sense to create a ticket EVEN IF you plan to re-create your cluster since that ticket would then make Azure DevOps aware of the issue resulting in a fix for other users on that Cluster management server.
Things to make Cluster Re-Creation Easier
I will add to this (feedback / ideas are appreciated) but off the top of my head:
Be diligent (obvious) about how you store all YAML files used to create your Cluster (even if you don't re-deploy often for your app by design).
Script your DNS modifications in order to speed up pointing to the new instance — If you have a public facing app / service that utilizes DNS (Maybe something like this example for Google Domains?: https://gist.github.com/cyrusboadway/5a7b715665f33c237996, Full docs here: https://cloud.google.com/dns/api/v1/)
We just had this issue for one of our clusters. Sent a support ticket and got called back 5 minutes later by an engineer asking if it was OK for them to restart the API Server. 2 minutes later it was working again.
Reason was something about timeouts in their messaging queue.

Is auto-scaling at a VM-level (cell-level) possible in Cloud Foundry? If yes, how can this be achieved?

I have seen two levels of scaling instances in open-source Cloud Foundry.
cf scale -i INSTANCES
cf scale -m MEMORY -k DISK
Is there something available for a cell-level auto-scaling in CF? e.g. If I have 5 instances of an app running and I want to launch 15 more but the current no. of cell VMs that are running have a capacity of running only 15 instances in total. Can I use an existing service that recognises that the load to be served would need one more cell to be launched and spawn another machine?
I'm looking to deploy CF on Azure, so Azure-specific solution would also help.
I think the short answer is no (at least at the time of me writing this). Usually, Cloud Foundry is deployed using Bosh and Bosh does not have an auto scaling feature.
The way that a CF platform is typically managed is that as a CF operator, you would have monitoring setup so that you can see the capacity of your platform (there are metrics that tell you how much capacity is left on your Cells) and also alert when your platform hits certain capacity limits. When you reach these, you can then use Bosh to scale up or down the number of Cells accordingly. This would be a manual operation with Bosh though.
Having said that, I suppose there's nothing to stop you from using the alerts to automatically trigger Bosh to scale up or down the Cells, there's just nothing (as of me writing this) to do that out-of-the-box (i.e. part of Bosh itself).
Hope that helps!

Resources