Kubernetes sporadic DNS error EAI_AGAIN with NodeJS pods - node.js

We are in the process of transitioning from a self-managed kubernetes cluster to Google's GKE Autopilot. All of our incoming API requests are handled by an "API Gateway" server that routes requests to various internal services. When testing this API Gateway on the new GKE Autopilot cluster, we noticed sporadic EAI_AGAIN DNS resolution errors for the internal services.
These errors occur even at low load (50-100 requests per second), but appear to increase when the number of concurrent requests increases. They also occur when rolling out a new image to downstream pods, despite having multiple replicas and a rolling update strategy.
Our API Gateway is written in NodeJS. Researching online (1, 2), I found that the issue might be related to one of (i) overloading the kubernetes-internal DNS server, (ii) overloading the nodejs event loop since getaddrinfo is blocking, (iii) an issue with MUSL in alpine-based NodeJS images, or (iv) a race condition in earlier linux kernel versions.
All but (iv) can probably be ruled out in our case:
(i) kubedns is at very low CPU usage, and GKE Autopilot implements node-local DNS caching by default.
(ii) Our API Gateway is at low CPU usage. The event loop does appear to lag sporadically for up to 100ms, but there is not an overwhelming correlation to the EAI_AGAIN error rate.
(iii) We are running debian-based NodeJS images.
(iv) I'm not sure what linux kernel version GKE Autopilot pods are running on, but at our low load I don't think we should be hitting this error.
It is strange to me that we are seeing these errors given that our load is not high compared to what other companies are running on kubernetes. Does someone have any pointers for where to look further?

Related

How does Application Gateway prevent requests being sent to recently terminated pods?

I'm currently researching and experimenting with Kubernetes in Azure. I'm playing with AKS and the Application Gateway ingress. As I understand it, when a pod is added to a service, the endpoints are updated and the ingress controller continuously polls this information. As new endpoints are added AG is updated. As they're removed AG is also updated.
As pods are added there will be a small delay whilst that pod is added to the AG before it receives requests. However, when pods are removed, does that delay in update result in requests being forwarded to a pod that no longer exists?
If not, how does AG/K8S guarantee this? What behaviour could the end client potentially experience in this scenario?
Azure Application gateway ingress is an ingress controller for your kubernetes deployment which allows you to use native Azure Application gateway to expose your application to the internet. Its purpose is to route the traffic to pods directly. At the same moment all questions about pods availability, scheduling and generally speaking management is on kubernetes itself.
When a pod receives a command to be terminated it doesn't happen instantly. Right after kube-proxies will update iptables to stop directing traffic to the pod. Also there may be ingress controllers or load balancers forwarding connections directly to the pod (which is the case with an application gateway). It's impossible to solve this issue completely, while adding 5-10 seconds delay can significantly improve users experience.
If you need to terminate or scale down your application, you should consider following steps:
Wait for a few seconds and then stop accepting connections
Close all keep-alive connections not in the middle of request
Wait for all active requests to finish
Shut down the application completely
Here are exact kubernetes mechanics which will help you to resolve your questions:
preStop hook - this hook is called immediately before a container is terminated. This is very helpful for graceful shutdowns of an application. For example simple sh command with "sleep 5" command in a preStop hook can prevent users to see "Connection refused errors". After the pod receives an API request to be terminated, it takes some time to update iptables and let an application gateway know that this pod is out of service. Since preStop hook is executed prior SIGTERM signal, it will help to resolve this issue.
(example can be found in attach lifecycle event)
readiness probe - this type of probe always runs on the container and defines whether pod is ready to accept and serve requests or not. When container's readiness probe returns success, it means the container can handle requests and it will be added to the endpoints. If a readiness probe fails, a pod is not capable to handle requests and it will be removed from endpoints object. It works very well with newly created pods when an application takes some time to load as well as for already running pods if an application takes some time for processing.
Before removing from the endpoints readiness probe should fail several times. It's possible to lower this amount to only one fail using failureTreshold field, however it still needs to detect one failed check.
(additional information on how to set it up can be found in configure liveness readiness startup probes)
startup probe - for some applications which require additional time on their first initialisation it can be tricky to set up a readiness probe parameters correctly and not compromise a fast response from the application.
Using failureThreshold * periodSecondsfields will provide this flexibility.
terminationGracePeriod - is also may be considered if an application requires more than default 30 seconds delay to gracefully shut down (e.g. this is important for stateful applications)

AppEngine nodejs app sporadically sends 502s and restarts

We have a nodejs app that gets successfully deployed to a standard environment. Something happens after about two hours (or sooner depending on traffic): our downstream clients start receiving a bunch of 502 responses and then the service stabilizes. We think this has been happening for at least a few months.
When investigating the cause of the 502s, I see that:
There are no unhandled exception/promise rejection logs to indicate that the node app has crashed
I console.log when receiving SIGTERM and that, too, does not appear in the logs
The logs of the nginx sidecar include the following:
2020/06/16 23:11:11 [error] 35#35: *1149 recv() failed (104: Connection reset by peer) while reading response header from upstream, client: 169.254.1.1, server: _, request: "POST /api/redacted HTTP/1.1", upstream: "http://127.0.0.1:8081/api/redacted", host: "redacted.appspot.com""
I'm assuming that the 502s are coming from nginx because the upstream has disappeared. Are there other explanations I should explore?
If GAE is replacing my app containers intentionally, shouldn't that process prevent these types of 502s?
Should I expect something other than SIGTERM to be sent by the environment when the application/container is getting replaced?
Update #1 (2020-06-22)
I investigated and found evidence that we might be exceeding memory quota so I changed our instance_class from F1 to F2. As I write this our instances are sitting at ~200M of memory usage (F2s have 512M available). Additionally, I use the --max-old-space-size switch to set nodes memory usage to 496M.
The 502s are still happening.
I suspect that the 502s are happening as a result of the autoscaler terminating instances. Our app never receives SIGTERM (even during deployments). That means I can't close http keepalive connections gracefully and might explain why nginx raises Connection reset by peer.
Update #2 (2020-06-24)
Our service is just standard REST type stuff, no heavy loops.
I'll post another update with some memory graphs but I don't see any spikes. Perhaps a small memory leak.
Here's our app.yaml:
service: redacted
runtime: nodejs12
instance_class: F2
handlers:
- url: /.*
secure: always
redirect_http_response_code: 301
script: auto
We had a very similar problem with our Node.js app deployed on App Engine Flexible.
In our case, we ultimately determined that we had memory pressure that was causing the Node.js garbage collector to sometimes delay the processing of a request for hundreds of milliseconds (sometimes more). This caused our health check URLs to sporadically timeout, prompting GAE to remove the instance from the active pool.
Because we typically had just two instances handling the steady traffic, removing one instance quickly overloaded the remaining instance, and it would soon suffer the same fate.
We were surprised to find that it could take two minutes or longer before App Engine assigned traffic to a newly-created instance. Between the time our original instances were declared unhealthy, and when new instance(s) were online, 502s would be returned (presumably by GAE's nginx) to the client.
We were able to stabilize the environment simply by adding:
automatic_scaling:
min_num_instances: 4
To our app.yaml. Because two instances were generally sufficient for the traffic, ensuring we always had four running apparently kept our memory usage low enough to prevent the GC from stalling request handling, and even if it did, we had enough excess capacity to handle one instance being removed.
The scaling settings for GAE standard are slightly different.
In retrospect, we could see that our latency/response times would get a little "jittery" before the real problems started. Most responses had typical response times ~30ms, but increasingly we would see outlier requests in the x00ms range. You may want to check your request logs to see if you see something similar.
New Relic's Node.js VM data was helpful in detecting that garbage collection was taking an increasing amount of time.
Usually, 502 messages are errors on nginx side, as you have mentioned. The detailed logs related to this errors are not surfaced to Cloud Logging, yet.
According to your behavior, it seems a workload, so we can relate this case to an issue with running out of resources.
There are somethings that are well worth to take a look:
Check your metrics. The memory and CPU usage should be under healthy limits.
Check whether your scaling metrics are being enough to your workload.
Is there a chance to share these metrics near to the restart event?
Also, i t would be goo if you share your resources and scaling in the app.yaml.

Bursts of Redis errors

We've recently created a new Standard 1 GB Azure Redis cache specifically for distributed locking - separated from our main Redis cache. This was done to improve stability on our main Redis cache which is a very long term issue which this action seems to of significantly helped with.
On our new cache, we observe bursts of ~100 errors within the same few seconds every 1 - 3 days. The errors are either:
No connection is available to service this operation (StackExchange.Redis error)
Or:
Could not acquire distributed lock: Conflicted (RedLock.net error)
As they are errors from different packages, I suspect the Redis cache itself is the problem here. None of the stats during this time look out of the ordinary and the workload should fit comfortably in the Standard 1GB size.
I'm guessing this could be caused by the advertised Low network performance advertised, is this likely the cause?
Your theory sounds plausible.
Checking for insufficient network bandwidth
Here is a handy table showing the maximum observed bandwidth for various pricing tiers. Take a look at the observed maximum bandwidth for your SKU, then head over to your Redis blade in the Azure Portal and choose Metrics. Set the aggregation to Max, and look at the sum of cache read and cache write. This is your total bandwidth consumed. Overlay the sum of these two against the time period when you're experiencing the errors, and see if the problem is network throughput. If that's the case, scale up.
Checking server load
Also on the Metrics tab, take a look at server load. This is the percentage that Redis is busy and is unable to process requests. If you hit 100%, Redis cannot respond to new requests and you will experience timeout issues. If that's the case, scale up.
Reusing ConnectionMultiplexer
You can also run out of connections to a Redis server if you're spinning up a new instance of StackExchange.Redis.ConnectionMultiplexer per request. The service limits for the number of connections available based on your SKU are here on the pricing page. You can see if you're exceeding the maximum allowed connections for your SKU on the Metrics tab, select max aggregation, and choose Connected Clients as your metric.
Thread Exhaustion
This doesn't sound like your error, but I'll include it for completeness in this Rogue's Gallery of Redis issues, and it comes into play with Azure Web Apps. By default, the thread pool will start with 4 threads that can be immediately allocated to work. When you need more than four threads, they're doled out at a rate of one thread per 500ms. So if you dump a ton of requests on a Web App in a short period of time, you can end up queuing work and eventually having requests dropped before they even get to Redis. To test to see if this is a problem, go to Metrics for your Web App and choose Threads and set the aggregation to max. If you see a huge spike in a short period of time that corresponds with your trouble, you've found a culprit. Resolutions include making proper use of async/await. And when that gets you no further, use ThreadPool.SetMinThreads to a higher value, preferably one that is close to or above the max thread usage that you see in your bursts.
Rob has some great suggestions but did want to add information on troubleshooting traffic burst and poor ThreadPool settings. Please see: Troubleshoot Azure Cache for Redis client-side issues
Bursts of traffic combined with poor ThreadPool settings can result in delays in processing data already sent by the Redis Server but not yet consumed on the client side.
Monitor how your ThreadPool statistics change over time using an example ThreadPoolLogger. You can use TimeoutException messages from StackExchange.Redis like below to further investigate:
System.TimeoutException: Timeout performing EVAL, inst: 8, mgr: Inactive, queue: 0, qu: 0, qs: 0, qc: 0, wr: 0, wq: 0, in: 64221, ar: 0,
IOCP: (Busy=6,Free=999,Min=2,Max=1000), WORKER: (Busy=7,Free=8184,Min=2,Max=8191)
Notice that in the IOCP section and the WORKER section you have a Busy value that is greater than the Min value. This difference means your ThreadPool settings need adjusting.
You can also see in: 64221. This value indicates that 64,211 bytes have been received at the client's kernel socket layer but haven't been read by the application. This difference typically means that your application (for example, StackExchange.Redis) isn't reading data from the network as quickly as the server is sending it to you.
You can configure your ThreadPool Settings to make sure that your thread pool scales up quickly under burst scenarios.
I hope you find this additional information is helpful.

Executing multiple HTTP client request in node

I'm writing a backend app using nodejs which execute a lot of http requests to external services and s3.
I have reached to roughly 800 requests per second on a single kubernetes pod.
The pod is limited to a single vcpu and it has reached to 100% usage.
I can scale it to tens of pods to handle the execution of thousands of requests,
but it seems that this limit has reached too soon.
I have tested it in my real backend app and then on a demo pod which does nothing but to send http request using axios.
Does it make sense that a single vcpu kubernetes pod can only handle 800 req / sec? (as client and not as a server).
It's quite hard to propose any advice for the best approach with choosing a proper capacity for the compute resources affordable to your specific needs. However, when you use 1x vCPU in Pod limit requests it equivalents 1 CPU unit for most widely used Cloud providers VM resources.
Thus, I would bet here for adding more CPU units into your Pod than spinning more Pods with a same number of vCPU by Kubernetes scheduler using HPA (Horizontal Pod Autoscaler) feature. Therefore, if you don't have enough capacity on your node, it's very easy to push lots of Pod to be overloaded; and indeed this would not give positive influence on Node compute engine.
In your example, there are two key metric parameters to analyze: latency (time for sending requests and receiving answer) and throughput (requests per second) of HTTP requests; here is always the rule on the top: Increasing the latency will decrease the overall throughput for your requests.
You can also read about Vertical Pod Autoscaler as an option for managing compute resources in Kubernetes cluster.

High amount of http read timeouts on azure

When we migrated our apps to azure from rackspace, we saw almost 50% of http requests getting read timeouts.
We tried placing the client both inside and outside azure with the same results. The client in this case is also a server btw, so no geographic/browser issues either.
We even tried increasing the size of the box to ensure azure wasn't throttling. But even using D boxes for a single request, the result was the same.
Once we moved out apps out of azure they started functioning properly again.
Each query was done directly on an instance using a public ip, so no load balancer issues either.
Almost 50% of queries ran into this issue. The timeout was set to 15 minutes.
Region was US East 2
Having 50% of HTTP requests timing out is not normal behavior. This is why you need to analyze what is causing those timeouts by validating the requests are hitting your VM. For this, I would recommend you running a packet capture on your server and analyze response times, as well as look for high number of retransmissions; it is even better if you can take a simultaneous network trace on your clients machines so you can do TCP sequence number analysis and compare packets sent vs received. 
If you are seeing high latencies in the packet capture or high number of retransmissions, it requires detailed analysis. I strongly suggest you to open a support incident so Microsoft support can help you investigate your issue further.

Resources