I am pretty new to Rust, and cannot manage to keep both Arcs values updated in both threads I'm spawning. The idea would be that one thread loops over received events and when it receives one, updates the object, which the other thread constantly watches. How can I achieve that in Rust, or if this method isn't adequate, would there be a better way to do it ?
(The concrete idea would be one thread listening for MIDI events and the other one re-rendering on a LED strip the notes received)
Here's what I currently have:
main.rs
mod functions;
mod structs;
use crate::functions::*;
use crate::structs::*;
use portmidi as pm;
use rs_ws281x::{ChannelBuilder, ControllerBuilder, StripType};
use std::sync::{Arc, Mutex};
use std::{fs, thread, time};
const MIDI_TIMEOUT: u64 = 10;
const MIDI_CHANNEL: usize = 0;
#[tokio::main]
async fn main() {
let config: Arc<std::sync::Mutex<Config>> = Arc::new(Mutex::new(
toml::from_str(&fs::read_to_string("config.toml").unwrap()).unwrap(),
));
let config_midi = config.clone();
let config_leds = config.clone();
let leds_status = Arc::new(Mutex::new(vec![0; config.lock().unwrap().leds.num_leds]));
let leds_status_midi = Arc::clone(&leds_status);
let leds_status_leds = Arc::clone(&leds_status);
thread::spawn(move || {
let config = config_midi.lock().unwrap();
let midi_context = pm::PortMidi::new().unwrap();
let device_info = midi_context
.device(config.midi.id)
.expect(format!("Could not find device with id {}", config.midi.id).as_str());
println!("Using device {}) {}", device_info.id(), device_info.name());
let input_port = midi_context
.input_port(device_info, config.midi.buffer_size)
.expect("Could not create input port");
let mut leds_status = leds_status_midi.lock().unwrap();
loop {
if let Ok(_) = input_port.poll() {
if let Ok(Some(events)) = input_port.read_n(config.midi.buffer_size) {
for event in events {
let event_type =
get_midi_event_type(event.message.status, event.message.data2);
match event_type {
MidiEventType::NoteOn => {
let key = get_note_position(event.message.data1, &config);
leds_status[key] = 1;
}
MidiEventType::NoteOff => {
let key = get_note_position(event.message.data1, &config);
leds_status[key] = 0;
}
_ => {}
}
}
}
}
thread::sleep(time::Duration::from_millis(MIDI_TIMEOUT));
}
});
thread::spawn(move || {
let config = config_leds.lock().unwrap();
let mut led_controller = ControllerBuilder::new()
.freq(800_000)
.dma(10)
.channel(
MIDI_CHANNEL,
ChannelBuilder::new()
.pin(config.leds.pin)
.count(config.leds.num_leds as i32)
.strip_type(StripType::Ws2812)
.brightness(config.leds.brightness)
.build(),
)
.build()
.unwrap();
loop {
let leds_status = leds_status_leds.lock().unwrap();
print!("\x1b[2J\x1b[1;1H");
println!(
"{:?}",
leds_status.iter().filter(|x| (**x) > 0).collect::<Vec<_>>()
);
}
});
}
functions.rs
use crate::structs::MidiEventType;
pub fn get_note_position(note: u8, config: &crate::structs::Config) -> usize {
let mut note_offset = 0;
for i in 0..config.leds.offsets.len() {
if note > config.leds.offsets[i][0] {
note_offset = config.leds.offsets[i][1];
break;
}
}
note_offset -= config.leds.shift;
let note_pos_raw = 2 * (note - 20) - note_offset;
config.leds.num_leds - (note_pos_raw as usize)
}
pub fn get_midi_event_type(status: u8, velocity: u8) -> MidiEventType {
if status == 144 && velocity > 0 {
MidiEventType::NoteOn
} else if status == 128 || (status == 144 && velocity == 0) {
MidiEventType::NoteOff
} else {
MidiEventType::ControlChange
}
}
structs.rs
use serde_derive::Deserialize;
#[derive(Deserialize, Debug)]
pub struct Config {
pub leds: LedsConfig,
pub midi: MidiConfig,
}
#[derive(Deserialize, Debug)]
pub struct LedsConfig {
pub pin: i32,
pub num_leds: usize,
pub brightness: u8,
pub offsets: Vec<Vec<u8>>,
pub shift: u8,
pub fade: i8,
}
#[derive(Deserialize, Debug)]
pub struct MidiConfig {
pub id: i32,
pub buffer_size: usize,
}
#[derive(Debug)]
pub enum MidiEventType {
NoteOn,
NoteOff,
ControlChange,
}
Thank you very much !
The idea would be that one thread loops over received events and when it receives one, updates the object, which the other thread constantly watches.
That's a good way to do it, particularly if one of the threads needs to be near-realtime (e.g. live audio processing). You can use channels to achieve this. You transfer the sender to one thread and the receiver to another. In a realtime scenario, the receiver can loop until try_recv errs with Empty (limiting to some number of iterations to prevent starvation of the processing code). For example, something like this, given a r: Receiver:
// Process 100 messages max to not starve the thread of the other stuff
// it needs to be doing.
for _ in 0..100 {
match r.try_recv() {
Ok(msg) => { /* Process msg, applying it to the current state */ },
Err(TryRecvError::Empty) => break,
Err(TryRecvError::Disconnected) => {
// The sender is gone, maybe this is our signal to terminate?
return;
},
}
}
Alternatively, if one thread needs to act only when a message is received, it can simply iterate the receiver, which will continue to loop as long as messages are received and the channel is open:
for msg in r {
// Handle the message
}
It really is that simple. If the channel is empty but there are senders alive, it will block until a message is received. Once all senders are gone and the channel is empty, the loop will terminate.
A channel can convey messages of exactly one type; if only one kind of message needs to be sent, you can use a struct. Otherwise, an enum with variants for each kind of message works well.
Given the sending side of the channel, s: Sender, you just s.send(your_message_value).
Another option would be to create an Arc<Mutex<_>>, which it looks like you are doing in your sample code. This way is fine if the lock contention is not too high, but this can inhibit the ability of both threads to run concurrently, which is often the goal of multithreading. Channels tend to work better in message-passing scenarios because there isn't a need for a mutual exclusion lock.
As a side note, you are using Tokio with an async main(), but you never actually do anything with any futures, so there's no reason to even use Tokio in this code.
Related
I'm working with a struct where I need to read the GPIO pin of a Raspberry Pi, and increment a 'register' within the struct every time the pin goes high. Concurrently with this, I would like to be able to sample the register every now and then to see what the current value is.
When implementing this, my thought was to spawn a thread that continuously loops checking if the pin has gone from Low to High, and increment the register from within the thread. Then, from the parent thread, I can read the value of the register and report it.
After doing some research, it seems that a scoped thread would not be the correct implementation of this, because the child thread would never hand over ownership of the register to the parent thread.
Rather, I believe I should use an Arc/Mutex combination guarding the register and only momentarily take control over the lock to increment the register. Is this the correct interpretation of multithreading in Rust?
Assuming the above is correct, I'm unsure of how to implement this in Rust.
struct GpioReader {
register: Arc<Mutex<i64>>,
input_pin: Arc<Mutex<InputPin>>,
}
impl GpioReader {
pub fn new(input_pin: InputPin) -> Self {
Self {
register: Arc::New(Mutex::from(0)),
input_pin: Arc::new(Mutex::from(input_pin))
}
}
pub fn start(&self) {
let pin = self.input_pin.lock().unwrap(); // ???
let register = self.register.lock().unwrap(); // ???
let handle = spawn(move || loop {
match pin.read() { // ???
High => register += 1, // ???
Low => (),
}
sleep(Duration::from_millis(SLEEP_TIME));
});
handle.join().expect("Failed to join thread.");
}
pub fn get_register(&self) -> i64 {
let reg_val = self.register.lock().unwrap();
return reg_val;
}
}
Given the above, how do I declare the pin and register variables in such a way that I can read off the pin and increment the register within the loop? My best guess is I'll have to instantiate some kind of reference to these members of the struct outside of the loop, and then pass the reference into the loop at which point I can use the lock() method of the Arc.
Edit: Using RaspberryPi 3A+ running Raspbian. The InputPin in question is from the rppal crate.
Mutex<i64> is an anti-pattern. Replace it with AtomicI64.
Arc is meant to be cloned with Arc::clone() to create new references to the same object.
Don't use shared ownership if not necessary. InputPin is only used from within the thread, so move it in instead.
I'm unsure why you do handle.join(). If you want it to continue in the background, don't wait for it with .join().
use std::{
sync::{
atomic::{AtomicI64, Ordering},
Arc,
},
thread::{self, sleep},
time::Duration,
};
use rppal::gpio::InputPin;
struct GpioReader {
register: Arc<AtomicI64>,
input_pin: Option<InputPin>,
}
const SLEEP_TIME: Duration = Duration::from_millis(1000);
impl GpioReader {
pub fn new(input_pin: InputPin) -> Self {
Self {
register: Arc::new(AtomicI64::new(0)),
input_pin: Some(input_pin),
}
}
pub fn start(&mut self) {
let register = Arc::clone(&self.register);
let pin = self.input_pin.take().expect("Thread already running!");
let handle = thread::spawn(move || loop {
match pin.read() {
High => {
register.fetch_add(1, Ordering::Relaxed);
}
Low => (),
}
sleep(SLEEP_TIME);
});
}
pub fn get_register(&self) -> i64 {
self.register.load(Ordering::Relaxed)
}
}
If you want to stop the thread automatically when the GpioReader object is dropped, you can use Weak to signal it to the thread:
use std::{
sync::{
atomic::{AtomicI64, Ordering},
Arc,
},
thread::{self, sleep},
time::Duration,
};
use rppal::gpio::InputPin;
struct GpioReader {
register: Arc<AtomicI64>,
input_pin: Option<InputPin>,
}
const SLEEP_TIME: Duration = Duration::from_millis(1000);
impl GpioReader {
pub fn new(input_pin: InputPin) -> Self {
Self {
register: Arc::new(AtomicI64::new(0)),
input_pin: Some(input_pin),
}
}
pub fn start(&mut self) {
let register = Arc::downgrade(&self.register);
let pin = self.input_pin.take().expect("Thread already running!");
let handle = thread::spawn(move || loop {
if let Some(register) = register.upgrade() {
match pin.read() {
High => {
register.fetch_add(1, Ordering::Relaxed);
}
Low => (),
}
sleep(SLEEP_TIME);
} else {
// Original `register` got dropped, cancel the thread
break;
}
});
}
pub fn get_register(&self) -> i64 {
self.register.load(Ordering::Relaxed)
}
}
I want to send Events between the game client and server and I already got it working, but I do not know how to do it with bevy.
I am dependent to use tokios async TcpStream, because I have to be able to split the stream into a OwnedWriteHalf and OwnedReadhalf using stream.into_split().
My first idea was to just spawn a thread that handles the connection and then send the received events to a queue using mpsc::channel
Then I include this queue into a bevy resource using app.insert_resource(Queue) and pull events from it in the game loop.
the Queue:
use tokio::sync::mpsc;
pub enum Instruction {
Push(GameEvent),
Pull(mpsc::Sender<Option<GameEvent>>),
}
#[derive(Clone, Debug)]
pub struct Queue {
sender: mpsc::Sender<Instruction>,
}
impl Queue {
pub fn init() -> Self {
let (tx, rx) = mpsc::channel(1024);
init(rx);
Self{sender: tx}
}
pub async fn send(&self, event: GameEvent) {
self.sender.send(Instruction::Push(event)).await.unwrap();
}
pub async fn pull(&self) -> Option<GameEvent> {
println!("new pull");
let (tx, mut rx) = mpsc::channel(1);
self.sender.send(Instruction::Pull(tx)).await.unwrap();
rx.recv().await.unwrap()
}
}
fn init(mut rx: mpsc::Receiver<Instruction>) {
tokio::spawn(async move {
let mut queue: Vec<GameEvent> = Vec::new();
loop {
match rx.recv().await.unwrap() {
Instruction::Push(ev) => {
queue.push(ev);
}
Instruction::Pull(sender) => {
sender.send(queue.pop()).await.unwrap();
}
}
}
});
}
But because all this has to be async I have block the pull() function in the sync game loop.
I do this using the futures-lite crate:
fn event_pull(
communication: Res<Communication>
) {
let ev = future::block_on(communication.event_queue.pull());
println!("got event: {:?}", ev);
}
And this works fine, BUT after around 5 seconds the whole program just halts and does not receive any more events.
It seems like that future::block_on() does block indefinitely.
Having the main function, in which bevy::prelude::App gets built and run, to be the async tokio::main function might also be a problem here.
It would probably be best to wrap the async TcpStream initialisation and tokio::sync::mpsc::Sender and thus also Queue.pull into synchronous functions, but I do not know how to do this.
Can anyone help?
How to reproduce
The repo can be found here
Just compile both server and client and then run both in the same order.
I got it to work by just replacing every tokio::sync::mpsc with crossbeam::channel, which might be a problem, as it does block
and manually initializing the tokio runtime.
so the init code looks like this:
pub struct Communicator {
pub event_bridge: bridge::Bridge,
pub event_queue: event_queue::Queue,
_runtime: Runtime,
}
impl Communicator {
pub fn init(ip: &str) -> Self {
let rt = tokio::runtime::Builder::new_multi_thread()
.enable_io()
.build()
.unwrap();
let (bridge, queue, game_rx) = rt.block_on(async move {
let socket = TcpStream::connect(ip).await.unwrap();
let (read, write) = socket.into_split();
let reader = TcpReader::new(read);
let writer = TcpWriter::new(write);
let (bridge, tcp_rx, game_rx) = bridge::Bridge::init();
reader::init(bridge.clone(), reader);
writer::init(tcp_rx, writer);
let event_queue = event_queue::Queue::init();
return (bridge, event_queue, game_rx);
});
// game of game_rx events to queue for game loop
let eq_clone = queue.clone();
rt.spawn(async move {
loop {
let event = game_rx.recv().unwrap();
eq_clone.send(event);
}
});
Self {
event_bridge: bridge,
event_queue: queue,
_runtime: rt,
}
}
}
And main.rs looks like this:
fn main() {
let communicator = communication::Communicator::init("0.0.0.0:8000");
communicator.event_bridge.push_tcp(TcpEvent::Register{name: String::from("luca")});
App::new()
.insert_resource(communicator)
.add_system(event_pull)
.add_plugins(DefaultPlugins)
.run();
}
fn event_pull(
communication: Res<communication::Communicator>
) {
let ev = communication.event_queue.pull();
if let Some(ev) = ev {
println!("ev");
}
}
Perhaps there might be a better solution.
struct ThreadHolder{
state: ???
thread: ???
}
impl ThreadHolder {
fn launch(&mut self) {
self.thread = ???
// in thread change self.state
}
}
#[test]
fn test() {
let mut th = ThreadHolder{...};
th.launch();
// thread will be destroy as soon as th go out of scope
}
I think there is something to deal with lifetime, but I don't know how to write it.
What you want is so simple that you don't even need it to be mutable in any way, and then it becomes trivial to share it across threads, unless you want to reset it. You said you need to leave a thread, for one reason or another, therefore I'll assume that you don't care about this.
You instead can poll it every tick (most games run in ticks so I don't think there will be any issue implementing that).
I will provide example that uses sleep, so it's not most accurate thing, it is painfully obvious on the last subsecond duration, but I am not trying to do your work for you anyway, there's enough resources on internet that can help you deal with it.
Here it goes:
use std::{
sync::Arc,
thread::{self, Result},
time::{Duration, Instant},
};
struct Timer {
end: Instant,
}
impl Timer {
fn new(duration: Duration) -> Self {
// this code is valid for now, but might break in the future
// future so distant, that you really don't need to care unless
// you let your players draw for eternity
let end = Instant::now().checked_add(duration).unwrap();
Timer { end }
}
fn left(&self) -> Duration {
self.end.saturating_duration_since(Instant::now())
}
// more usable than above with fractional value being accounted for
fn secs_left(&self) -> u64 {
let span = self.left();
span.as_secs() + if span.subsec_millis() > 0 { 1 } else { 0 }
}
}
fn main() -> Result<()> {
let timer = Timer::new(Duration::from_secs(10));
let timer_main = Arc::new(timer);
let timer = timer_main.clone();
let t = thread::spawn(move || loop {
let seconds_left = timer.secs_left();
println!("[Worker] Seconds left: {}", seconds_left);
if seconds_left == 0 {
break;
}
thread::sleep(Duration::from_secs(1));
});
loop {
let seconds_left = timer_main.secs_left();
println!("[Main] Seconds left: {}", seconds_left);
if seconds_left == 5 {
println!("[Main] 5 seconds left, waiting for worker thread to finish work.");
break;
}
thread::sleep(Duration::from_secs(1));
}
t.join()?;
println!("[Main] worker thread finished work, shutting down!");
Ok(())
}
By the way, this kind of implementation wouldn't be any different in any other language, so please don't blame Rust for it. It's not the easiest language, but it provides more than enough tools to build anything you want from scratch as long as you put effort into it.
Goodluck :)
I think I got it work
use std::sync::{Arc, Mutex};
use std::thread::{sleep, spawn, JoinHandle};
use std::time::Duration;
struct Timer {
pub(crate) time: Arc<Mutex<u32>>,
jh_ticker: Option<JoinHandle<()>>,
}
impl Timer {
fn new<T>(i: T, duration: Duration) -> Self
where
T: Iterator<Item = u32> + Send + 'static,
{
let time = Arc::new(Mutex::new(0));
let arc_time = time.clone();
let jh_ticker = Some(spawn(move || {
for item in i {
let mut mg = arc_time.lock().unwrap();
*mg = item;
drop(mg); // needed, otherwise this thread will always hold lock
sleep(duration);
}
}));
Timer { time, jh_ticker }
}
}
impl Drop for Timer {
fn drop(&mut self) {
self.jh_ticker.take().unwrap().join();
}
}
#[test]
fn test_timer() {
let t = Timer::new(0..=10, Duration::from_secs(1));
let a = t.time.clone();
for _ in 0..100 {
let b = *a.lock().unwrap();
println!("{}", b);
sleep(Duration::from_millis(100));
}
}
I have a struct that sends messages to a channel as well as updating some of its own fields. How do I implement a monitoring thread that looks (read only) at its internal fields periodically?
I can write it using a Arc<Mutex<T>> wrapper, but I feel it is not that efficient as A::x could have been i32 which is stored and updated on the stack. Is there any better way to do it without the locks?
use std::sync::{Arc, Mutex};
use std::sync::mpsc::{channel, Sender};
use std::{thread, time};
struct A {
x: Arc<Mutex<i32>>,
y: Sender<i32>,
}
impl A {
fn do_some_loop(&mut self) {
let sleep_time = time::Duration::from_millis(200);
// This is a long running thread.
for x in 1..1000000 {
*self.x.lock().unwrap() = x;
self.y.send(x);
thread::sleep(sleep_time);
}
}
}
fn test() {
let (sender, recever) = channel();
let x = Arc::new(Mutex::new(1));
let mut a = A { x: x.clone(), y: sender };
thread::spawn(move || {
// Monitor every 10 secs.
let sleep_time = time::Duration::from_millis(10000);
loop {
thread::sleep(sleep_time);
println!("{}", *x.lock().unwrap());
}
});
a.do_some_loop();
}
I am a beginner in Rust.
I have a long running IO-bound process that I want to spawn and monitor via a REST API. I chose Iron for that, following this tutorial . Monitoring means getting its progress and its final result.
When I spawn it, I give it an id and map that id to a resource that I can GET to get the progress. I don't have to be exact with the progress; I can report the progress from 5 seconds ago.
My first attempt was to have a channel via which I send request for progress and receive the status. I got stuck where to store the receiver, as in my understanding it belongs to one thread only. I wanted to put it in the context of the request, but that won't work as there are different threads handling subsequent requests.
What would be the idiomatic way to do this in Rust?
I have a sample project.
Later edit:
Here is a self contained example which follows the sample principle as the answer, namely a map where each thread updates its progress:
extern crate iron;
extern crate router;
extern crate rustc_serialize;
use iron::prelude::*;
use iron::status;
use router::Router;
use rustc_serialize::json;
use std::io::Read;
use std::sync::{Mutex, Arc};
use std::thread;
use std::time::Duration;
use std::collections::HashMap;
#[derive(Debug, Clone, RustcEncodable, RustcDecodable)]
pub struct Status {
pub progress: u64,
pub context: String
}
#[derive(RustcEncodable, RustcDecodable)]
struct StartTask {
id: u64
}
fn start_process(status: Arc<Mutex<HashMap<u64, Status>>>, task_id: u64) {
let c = status.clone();
thread::spawn(move || {
for i in 1..100 {
{
let m = &mut c.lock().unwrap();
m.insert(task_id, Status{ progress: i, context: "in progress".to_string()});
}
thread::sleep(Duration::from_secs(1));
}
let m = &mut c.lock().unwrap();
m.insert(task_id, Status{ progress: 100, context: "done".to_string()});
});
}
fn main() {
let status: Arc<Mutex<HashMap<u64, Status>>> = Arc::new(Mutex::new(HashMap::new()));
let status_clone: Arc<Mutex<HashMap<u64, Status>>> = status.clone();
let mut router = Router::new();
router.get("/:taskId", move |r: &mut Request| task_status(r, &status.lock().unwrap()));
router.post("/start", move |r: &mut Request|
start_task(r, status_clone.clone()));
fn task_status(req: &mut Request, statuses: & HashMap<u64,Status>) -> IronResult<Response> {
let ref task_id = req.extensions.get::<Router>().unwrap().find("taskId").unwrap_or("/").parse::<u64>().unwrap();
let payload = json::encode(&statuses.get(&task_id)).unwrap();
Ok(Response::with((status::Ok, payload)))
}
// Receive a message by POST and play it back.
fn start_task(request: &mut Request, statuses: Arc<Mutex<HashMap<u64, Status>>>) -> IronResult<Response> {
let mut payload = String::new();
request.body.read_to_string(&mut payload).unwrap();
let task_start_request: StartTask = json::decode(&payload).unwrap();
start_process(statuses, task_start_request.id);
Ok(Response::with((status::Ok, json::encode(&task_start_request).unwrap())))
}
Iron::new(router).http("localhost:3000").unwrap();
}
One possibility is to use a global HashMap that associate each worker id with the progress (and result). Here is simple example (without the rest stuff)
#[macro_use]
extern crate lazy_static;
use std::sync::Mutex;
use std::collections::HashMap;
use std::thread;
use std::time::Duration;
lazy_static! {
static ref PROGRESS: Mutex<HashMap<usize, usize>> = Mutex::new(HashMap::new());
}
fn set_progress(id: usize, progress: usize) {
// insert replaces the old value if there was one.
PROGRESS.lock().unwrap().insert(id, progress);
}
fn get_progress(id: usize) -> Option<usize> {
PROGRESS.lock().unwrap().get(&id).cloned()
}
fn work(id: usize) {
println!("Creating {}", id);
set_progress(id, 0);
for i in 0..100 {
set_progress(id, i + 1);
// simulates work
thread::sleep(Duration::new(0, 50_000_000));
}
}
fn monitor(id: usize) {
loop {
if let Some(p) = get_progress(id) {
if p == 100 {
println!("Done {}", id);
// to avoid leaks, remove id from PROGRESS.
// maybe save that the task ends in a data base.
return
} else {
println!("Progress {}: {}", id, p);
}
}
thread::sleep(Duration::new(1, 0));
}
}
fn main() {
let w = thread::spawn(|| work(1));
let m = thread::spawn(|| monitor(1));
w.join().unwrap();
m.join().unwrap();
}
You need to register one channel per request thread, because if cloning Receivers were possible the responses might/will end up with the wrong thread if two request are running at the same time.
Instead of having your thread create a channel for answering requests, use a future. A future allows you to have a handle to an object, where the object doesn't exist yet. You can change the input channel to receive a Promise, which you then fulfill, no output channel necessary.