Are there any alternatives to COVAREP in python? - audio

I find that many multimodal sentiment analysis datasets(like CMU-MOSI) use the COVAREP to extract the audio features(74-dimensions). But i'm not familiar with Matlab. So, i wonder if there are some way for me to get the same features as COVAREP using Python?

Related

NLP to analyse requests

Hi I am trying to analyse descriptions of around 30000 requests to identify common requests as the data has no tags or titles.
I’ve looked at a lot of content on sentiment analysis and I’m currently thinking I need to train a model from a small random sample to better classify the data.
Is there a better approach I should be following?
Before answering your question, I would say what you're looking for has similar solutions to sentiment analysis but is a different case.
If you want to group any documents you have 2 methods to move on with in AI.
1- Supervised Learning (Classifying)
2- Unsupervised Learning (Clustering)
In your case as there is no labeled (tagged) data, then clustering is more convenient.
You can generate the tf-idf vector and use it as the feature for each word and document in descriptions and cluster the data based on that.
Depending on the coding language you use there are a lot of examples on the web but for java you can check out below links,
TextAnalyzer
Carrot Clustering

Text Classification - what can you do vs. what are your capabilities?

Text Classification basically works on the input training sentences. Little or less number of variations of in the sentences do work. But when there is a scenario like
What can you do <<==>> What are your capabilities
This scenario does not work well with the regular classification or bot building platforms.
Are there any approaches for classification that would help me achieve this ?
What you are trying to solve is called Semantic Textual Similarity and is a known and well studied field.
There are many different ways to solve this even if your data is tagged or not.
For example, Google has published the Universal Sentence Encoder (code example) which is intended to tell if two sentences are similar like in your case.
Another example would be any solution you can find in Quora Question Pairs Kaggle competition.
There are also datasets for this problem, for example you can look for SemEval STS (STS for Semantic Textual Similarity), or the PAWS dataset

NLP Structure Question (best way for doing feature extraction)

I am building an NLP pipeline and I am trying to get my head around in regards to the optimal structure. My understanding at the moment is the following:
Step1 - Text Pre-processing [a. Lowercasing, b. Stopwords removal, c. stemming, d. lemmatisation,]
Step 2 - Feature extraction
Step 3 - Classification - using the different types of classifier(linearSvC etc)
From what I read online there are several approaches in regard to feature extraction but there isn't a solid example/answer.
a. Is there a solid strategy for feature extraction ?
I read online that you can do [a. Vectorising usin ScikitLearn b. TF-IDF]
but also I read that you can use Part of Speech or word2Vec or other embedding and Name entity recognition.
b. What is the optimal process/structure of using these?
c. On the text pre-processing I am ding the processing on a text column on a df and the last modified version of it is what I use as an input in my classifier. If you do feature extraction do you do that in the same column or you create a new one and you only send to the classifier the features from that column?
Thanks so much in advance
The preprocessing pipeline depends mainly upon your problem which you are trying to solve. The use of TF-IDF, word embeddings etc. have their own restrictions and advantages.
You need to understand the problem and also the data associated with it. In order to make the best use of the data, we need to implement the proper pipeline.
Specifically for text related problems, you will find word embeddings to be very useful. TF-IDF is useful when the problem needs to be solved emphasising the words with lesser frequency. Word embeddings, on the other hand, convert the text to a N-dimensional vector which may show up similarity with some other vector. This could bring a sense of association in your data and the model can learn the best features possible.
In simple cases, we can use a bag of words representation to tokenize the texts.
So, you need to discover the best approach for your problem. If you are solving a problems which closely resembles the famous NLP problems like IMDB review classification, sentiment analysis on Twitter data, then you can find a number of approaches on the internet.

Entity Recognition and Sentiment Analysis using NLP

So, this question might be a little naive, but I thought asking the friendly people of Stackoverflow wouldn't hurt.
My current company has been using a third party API for NLP for a while now. We basically URL encode a string and send it over, and they extract certain entities for us (we have a list of entities that we're looking for) and return a json mapping of entity : sentiment. We've recently decided to bring this project in house instead.
I've been studying NLTK, Stanford NLP and lingpipe for the past 2 days now, and can't figure out if I'm basically reinventing the wheel doing this project.
We already have massive tables containing the original unstructured text and another table containing the extracted entities from that text and their sentiment. The entities are single words. For example:
Unstructured text : Now for the bed. It wasn't the best.
Entity : Bed
Sentiment : Negative
I believe that implies we have training data (unstructured text) as well as entity and sentiments. Now how I can go about using this training data on one of the NLP frameworks and getting what we want? No clue. I've sort of got the steps, but not sure:
Tokenize sentences
Tokenize words
Find the noun in the sentence (POS tagging)
Find the sentiment of that sentence.
But that should fail for the case I mentioned above since it talks about the bed in 2 different sentences?
So the question - Does any one know what the best framework would be for accomplishing the above tasks, and any tutorials on the same (Note: I'm not asking for a solution). If you've done this stuff before, is this task too large to take on? I've looked up some commercial APIs but they're absurdly expensive to use (we're a tiny startup).
Thanks stackoverflow!
OpenNLP may also library to look at. At least they have a small tutuorial to train the name finder and to use the document categorizer to do sentiment analysis. To trtain the name finder you have to prepare training data by taging the entities in your text with SGML tags.
http://opennlp.apache.org/documentation/1.5.3/manual/opennlp.html#tools.namefind.training
NLTK provides a naive NER tagger along with resources. But It doesnt fit into all cases (including finding dates.) But NLTK allows you to modify and customize the NER Tagger according to the requirement. This link might give you some ideas with basic examples on how to customize. Also if you are comfortable with scala and functional programming this is one tool you cannot afford to miss.
Cheers...!
I have discovered spaCy lately and it's just great ! In the link you can find comparative for performance in term of speed and accuracy compared to NLTK, CoreNLP and it does really well !
Though to solve your problem task is not a matter of a framework. You can have two different system, one for NER and one for Sentiment and they can be completely independent. The hype these days is to use neural network and if you are willing too, you can train a recurrent neural network (which has showed best performance for NLP tasks) with attention mechanism to find the entity and the sentiment too.
There are great demo everywhere on the internet, the last two I have read and found interesting are [1] and [2].
Similar to Spacy, TextBlob is another fast and easy package that can accomplish many of these tasks.
I use NLTK, Spacy, and Textblob frequently. If the corpus is simple, generic, and straightforward, Spacy and Textblob work well OOTB. If the corpus is highly customized, domain-specific, messy (incorrect spelling or grammar), etc. I'll use NLTK and spend more time customizing my NLP text processing pipeline with scrubbing, lemmatizing, etc.
NLTK Tutorial: http://www.nltk.org/book/
Spacy Quickstart: https://spacy.io/usage/
Textblob Quickstart: http://textblob.readthedocs.io/en/dev/quickstart.html

Unguided speech to text conversion

I am trying to come up with a way to convert speech to text. I am trying to use Sphinx to attain this. What I mean by unguided speech to text is that, the speaker is not bound to speak from a definite set of sentences. Rather he might speak any sentence. So its not possible for me to have a grammar file, where each word is one of the alternative pre-written in the grammar file. I understand that I would have to train Sphinx somehow to do this.
But I am a beginner in sphinx. How to start training Sphinx to convert unguided speech? Is it possible to attain unguided conversion with Sphinx?
The task you are up to is, as of right now, is not yet possible to complete, at least not with satisfying accuracy.
As for the Sphinx-based solution: you will have to create dictionary with all the words to be recognized. There is no other way.
Once you have the dictionary, you can generate a simple n-gram model based on it, with ony unigrams - each unigram will be one word. The probability of each may be the same, or you may attempt to do some statistical analysis of the words that will be used.

Resources