I have a two 3D variables for a each time step (so I have N 3d matrix var(Nx,Ny,Nz), for each variables). I want to construct the two point statistics but I guess I'm doing something wrong.
Two-point statistics formula, where x_r is the reference point and x is the independent variable
I know that the theoretical formulation of a two-point cross correlation is the one written above.
Let's for sake of simplicity ignore the normalization, so I'm focusing on the numerator, that is the part I'm struggling with.
So, my two variables are two 3D matrix, with the following notation phi(x,y,z) = phi(i,j,k), same for psi.
My aim is to compute a 3d correlation, so given a certain reference point Reference_Point = (xr,yr,zr), but I guess I'm doing something wrong. I'm trying that on MATLAB, but my results are not accurate, and by doing some researches online it does seem that I should do convolutions or fft, but I don't find any theoretical framework that explains how to do that and why the formulation above in practices should be implemented by the use of a conv or fft. Moreover I would like to implement my cross-correlation in the spatial domain and not in the frequency domain, and with the convolution I don't understand how to choose the reference point.
Thank you so much in advance for reply
Related
I'm working on a simple project in which I'm trying to describe the relationship between two positively correlated variables and determine if that relationship is changing over time, and if so, to what degree. I feel like this is something people probably do pretty often, but maybe I'm just not using the correct terminology because google isn't helping me very much.
I've plotted the variables on a scatter plot and know how to determine the correlation coefficient and plot a linear regression. I thought this may be a good first step because the linear regression tells me what I can expect y to be for a given x value. This means I can quantify how "far away" each data point is from the regression line (I think this is called the squared error?). Now I'd like to see what the error looks like for each data point over time. For example, if I have 100 data points and the most recent 20 are much farther away from where the regression line/function says it should be, maybe I could say that the relationship between the variables is showing signs of changing? Does that make any sense at all or am I way off base?
I have a suspicion that there is a much simpler way to do this and/or that I'm going about it in the wrong way. I'd appreciate any guidance you can offer!
I can suggest two strands of literature that study changing relationships over time. Typing these names into google should provide you with a large number of references so I'll stick to more concise descriptions.
(1) Structural break modelling. As the name suggest, this assumes that there has been a sudden change in parameters (e.g. a correlation coefficient). This is applicable if there has been a policy change, change in measurement device, etc. The estimation approach is indeed very close to the procedure you suggest. Namely, you would estimate the squared error (or some other measure of fit) on the full sample and the two sub-samples (before and after break). If the gains in fit are large when dividing the sample, then you would favour the model with the break and use different coefficients before and after the structural change.
(2) Time-varying coefficient models. This approach is more subtle as coefficients will now evolve more slowly over time. These changes can originate from the time evolution of some observed variables or they can be modeled through some unobserved latent process. In the latter case the estimation typically involves the use of state-space models (and thus the Kalman filter or some more advanced filtering techniques).
I hope this helps!
I was wondering if there was a direct way of computing the iteration matrix for nth Linear Block Gauss Seidel iteration within OpenMDAO?
thank you
If I understand you correctly, you are referring to the matrix-form of the Gauss Seidel algorithm where you take Ax=b, and break A up into the Diagonal (D), Lower (L) and Upper (U) parts, then use those parts to compute the next iterate.
Specifically you compute [D-L]^-1. This, I believe is what you are referring to as the "iteration matrix" (I am not familiar with this terminology, but based on the algorithm I'm comfortable making an educated guess).
This formulation of the algorithm is useful to think about and a simple way to implement it, but OpenMDAO takes a different approach. The LBGS algorithm implemented in OpenMDAO is set up to work in a matrix-free manner. That means it only interacts with the linear operator methods solve_linear and apply_linear and never explicitly assembles the A matrix at all. Hence there isn't an opportunity to split A up into D, L, U.
Depending on the way you constructed the model, the A matrix you would need might or might not be there at all because OpenMDAO is capable of working in a completely matrix free context. However, if all of your components use the compute_partials or linearize methods to provide partial derivatives then the data you would need for the A matrix does exist in memory.
You'll have to dig for it a bit, and ironically the best place to see how to do that is in the direct solver which does actually require the matrix be formed to compute a factorization.
Also, in that code you'll see a function can iteratively call the linear operator to construct a dense matrix even if the underlying components don't provide their partials directly. Please note that this approach for assembling the matrix is extremely slow and is not recommended for normal operations.
I want to make a model which can differentiate between general functions eg. If a given set of points fall on a line or a parabola etc.
I am not able to train a svc directly on arrays as it expects an array of 2d shape
Any suggestions?
Note: eventually i want to build it into classifying into periodic functions given a set of data points
Okay so your input is an array of points, each point has coordinates (x,y) and your label is the type of function.
In math, this task is called interpolation and this is where you get a set of points and you return the function that should be returned.
What you are describing seems more like non-linear regression (curve fitting) than it is about classification, you'll have too many classes to cover and it doesn't really make sense to do that anyway.
Here is a tutorial in python about non-linear regression that would be more useful. https://scipy-cookbook.readthedocs.io/items/robust_regression.html
Despite going through lots of similar question related to this I still could not understand why some algorithm is susceptible to it while others are not.
Till now I found that SVM and K-means are susceptible to feature scaling while Linear Regression and Decision Tree are not.Can somebody please elaborate me why? in general or relating to this 4 algorithm.
As I am a beginner, please explain this in layman terms.
One reason I can think of off-hand is that SVM and K-means, at least with a basic configuration, uses an L2 distance metric. An L1 or L2 distance metric between two points will give different results if you double delta-x or delta-y, for example.
With Linear Regression, you fit a linear transform to best describe the data by effectively transforming the coordinate system before taking a measurement. Since the optimal model is the same no matter the coordinate system of the data, pretty much by definition, your result will be invariant to any linear transform including feature scaling.
With Decision Trees, you typically look for rules of the form x < N, where the only detail that matters is how many items pass or fail the given threshold test - you pass this into your entropy function. Because this rule format does not depend on dimension scale, since there is no continuous distance metric, we again have in-variance.
Somewhat different reasons for each, but I hope that helps.
Let's say, I have two random variables,x and y, both of them have n observations. I've used a forecasting method to estimate xn+1 and yn+1, and I also got the standard error for both xn+1 and yn+1. So my question is that what the formula would be if I want to know the standard error of xn+1 + yn+1, xn+1 - yn+1, (xn+1)*(yn+1) and (xn+1)/(yn+1), so that I can calculate the prediction interval for the 4 combinations. Any thought would be much appreciated. Thanks.
Well, the general topic you need to look at is called "change of variables" in mathematical statistics.
The density function for a sum of random variables is the convolution of the individual densities (but only if the variables are independent). Likewise for the difference. In special cases, that convolution is easy to find. For example, for Gaussian variables the density of the sum is also a Gaussian.
For product and quotient, there aren't any simple results, except in special cases. For those, you might as well compute the result directly, maybe by sampling or other numerical methods.
If your variables x and y are not independent, that complicates the situation. But even then, I think sampling is straightforward.