vtk: `vtkImplicitPolyDataDistance` cost so much time - vtk

I find vtkImplicitPolyDataDistance cost so much time. My code is:
import vtkmodules.all as vtk
image = vtk.vtkImageData()
info = vtk.vtkInformation()
image.SetDimensions(128, 128, 128)
image.SetNumberOfScalarComponents(1, info)
image.AllocateScalars(info)
for i in range(128):
for j in range(128):
for k in range(128):
image.SetScalarComponentFromDouble(i, j, k, 0, i+j+k)
image.Modified()
print('image initialization finish')
cube = vtk.vtkCubeSource()
cube.SetCenter(64, 64, 64)
cube.SetXLength(16)
cube.SetYLength(16)
cube.SetZLength(8)
cube.Update()
print(cube.GetOutput().GetBounds())
import time
start = time.time()
implictFunc = vtk.vtkImplicitPolyDataDistance()
implictFunc.SetInput(cube.GetOutput())
clip = vtk.vtkClipVolume()
clip.SetClipFunction(implictFunc)
clip.SetInputData(image)
clip.Update()
end = time.time()
print('time: ', end-start)
It cost 16s.
Is it normal? Or there is some wrong with my code?
My final goal is: display a 3D image inside a specified region, which defined by a vtkPolyData. So I want to use vtkClipVolume to clip the image within the region. Is there any other method rather than vtkClipVolume?
Any suggestion is appreciated~~~

Related

RuntimeError: Trying to backward through the graph a second time. Saved intermediate values of the graph are freed when you call .backward()

I am trying to train SRGAN from scratch. I have read solutions for this type of problem, but it would be great if someone could help me debug my code. The exact error is: "RuntimeError: Trying to backward through the graph a second time (or directly access saved tensors after they have already been freed). Saved intermediate values of the graph are freed when you call .backward() or autograd.grad()" Here is the snippet I am trying to train:
gen_model = Generator().to(device, non_blocking=True)
disc_model = Discriminator().to(device, non_blocking=True)
opt_gen = optim.Adam(gen_model.parameters(), lr=0.01)
opt_disc = optim.Adam(disc_model.parameters(), lr=0.01)
from torch.nn.modules.loss import BCELoss
def train_model(gen, disc):
for epoch in range(20):
run_loss_disc = 0
run_loss_gen = 0
for data in train:
low_res, high_res = data[0].to(device, non_blocking=True, dtype=torch.float).permute(0, 3, 1, 2),data[1].to(device, non_blocking=True, dtype=torch.float).permute(0, 3, 1, 2)
#--------Discriminator-----------------
gen_image = gen(low_res)
gen_image = gen_image.detach()
disc_gen = disc(gen_image)
disc_real = disc(high_res)
p=nn.BCEWithLogitsLoss()
loss_gen = p(disc_real, torch.ones_like(disc_real))
loss_real = p(disc_gen, torch.zeros_like(disc_gen))
loss_disc = loss_gen + loss_real
opt_disc.zero_grad()
loss_disc.backward()
run_loss_disc+=loss_disc
#---------Generator--------------------
cont_loss = vgg_loss(high_res, gen_image)
adv_loss = 1e-3*p(disc_gen, torch.ones_like(disc_gen))
gen_loss = cont_loss+(10^-3)*adv_loss
opt_gen.zero_grad()
gen_loss.backward()
opt_disc.step()
opt_gen.step()
run_loss_gen+=gen_loss
print("Run Loss Discriminator: %d", run_loss_disc)
print("Run Loss Generator: %d", run_loss_gen)
train_model(gen_model, disc_model)
Apparently your disc_gen value was discarded by the first backward() call, as it says.
It should work if you change the discriminator part a bit:
gen_image = gen(low_res)
disc_gen = disc(gen_image.detach())
and add this at the start of the generator part:
disc_gen = disc(gen_image)

Problem with adding smiles on photos with convolutional autoencoder

I have a dataset with images and another dataset as it's description:
There are a lot of pictures: people with and without sunglasses, smiles and other attributes. What I want to do is be able to add smiles to photos where people are not smiling.
I've started like this:
smile_ids = attrs['Smiling'].sort_values(ascending=False).iloc[100:125].index.values
smile_data = data[smile_ids]
no_smile_ids = attrs['Smiling'].sort_values(ascending=True).head(5).index.values
no_smile_data = data[no_smile_ids]
eyeglasses_ids = attrs['Eyeglasses'].sort_values(ascending=False).head(25).index.values
eyeglasses_data = data[eyeglasses_ids]
sunglasses_ids = attrs['Sunglasses'].sort_values(ascending=False).head(5).index.values
sunglasses_data = data[sunglasses_ids]
When I print them their are fine:
plot_gallery(smile_data, IMAGE_H, IMAGE_W, n_row=5, n_col=5, with_title=True, titles=smile_ids)
Plot gallery looks like this:
def plot_gallery(images, h, w, n_row=3, n_col=6, with_title=False, titles=[]):
plt.figure(figsize=(1.5 * n_col, 1.7 * n_row))
plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
for i in range(n_row * n_col):
plt.subplot(n_row, n_col, i + 1)
try:
plt.imshow(images[i].reshape((h, w, 3)), cmap=plt.cm.gray, vmin=-1, vmax=1, interpolation='nearest')
if with_title:
plt.title(titles[i])
plt.xticks(())
plt.yticks(())
except:
pass
Then I do:
def to_latent(pic):
with torch.no_grad():
inputs = torch.FloatTensor(pic.reshape(-1, 45*45*3))
inputs = inputs.to('cpu')
autoencoder.eval()
output = autoencoder.encode(inputs)
return output
def from_latent(vec):
with torch.no_grad():
inputs = vec.to('cpu')
autoencoder.eval()
output = autoencoder.decode(inputs)
return output
After that:
smile_latent = to_latent(smile_data).mean(axis=0)
no_smile_latent = to_latent(no_smile_data).mean(axis=0)
sunglasses_latent = to_latent(sunglasses_data).mean(axis=0)
smile_vec = smile_latent-no_smile_latent
sunglasses_vec = sunglasses_latent - smile_latent
And finally:
def add_smile(ids):
for id in ids:
pic = data[id:id+1]
latent_vec = to_latent(pic)
latent_vec[0] += smile_vec
pic_output = from_latent(latent_vec)
pic_output = pic_output.view(-1,45,45,3).cpu()
plot_gallery([pic,pic_output], IMAGE_H, IMAGE_W, n_row=1, n_col=2)
def add_sunglasses(ids):
for id in ids:
pic = data[id:id+1]
latent_vec = to_latent(pic)
latent_vec[0] += sunglasses_vec
pic_output = from_latent(latent_vec)
pic_output = pic_output.view(-1,45,45,3).cpu()
plot_gallery([pic,pic_output], IMAGE_H, IMAGE_W, n_row=1, n_col=2)
But when I execute this line I don't get any faces:
add_smile(no_smile_ids)
The output:
Could someone please explain where is my mistake or why it can happen? Thanks for any help.
Added: checking the shape of pic_output:
Wild guess, but it seems you are broadcasting your images instead of permuting the axes. The former will have the undesired effect of mixing information across the batches/channels.
pic_output = pic_output.view(-1, 45, 45, 3).cpu()
should be replaced with
pic_output = pic_output.permute(0, 2, 3, 1).cpu()
Assuming tensor pic_output is already shaped like (-1, 3, 45, 45).

Python - OpenCv - Gradient computing

I've download the opencv from https://opencv.org/opencv-demonstrator-gui/ to make some live test on some images.
I found that this filter work perfectly for my needs:
,
I need to code it in my python script, tried to follow this tutorial :https://docs.opencv.org/3.4/d2/d2c/tutorial_sobel_derivatives.html
but I'm unable to find and match setting I need (pre-filtering Deriche, or Schar operator type).
I guess also I should use this syntax:
cv.Sobel(gray, ddepth, 1, 0, ksize=3, scale=scale, delta=delta, borderType=cv.BORDER_DEFAULT)
Thx.
UPDATE
Using this lines I'm close to right result:
scale = 1
delta = 0
ddepth = cv2.CV_16S
src = cv2.imread(image, cv2.IMREAD_COLOR)
src = cv2.GaussianBlur(src, (3, 3), 0)
gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
grad_x = cv2.Sobel(gray, ddepth, 1, 0, ksize=3, scale=scale, delta=delta, borderType=cv2.BORDER_DEFAULT)
# Gradient-Y
# grad_y = cv.Scharr(gray,ddepth,0,1)
grad_y = cv2.Sobel(gray, ddepth, 0, 1, ksize=3, scale=scale, delta=delta, borderType=cv2.BORDER_DEFAULT)
abs_grad_x = cv2.convertScaleAbs(grad_x)
abs_grad_y = cv2.convertScaleAbs(grad_y)
grad = cv2.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0)
You are only doing the X derivative Sobel filter in Python/OpenCV. It is likely you really want the gradient magnitude, not the X directional derivative. To compute the magnitude, you need both the X and Y derivatives and then compute the magnitude. You also like will need to compute as float so as not to get one sided derivatives. You can later convert the magnitude to 8-bit if you want.
gradx = cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=3)
grady = cv2.Sobel(gray,cv2.CV_64F,0,1,ksize=3)
gradmag = cv2.magnitude(gradx,grady)
The Scharr is similar and can be found at https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaa13106761eedf14798f37aa2d60404c9

How to generate heat map on the Whole Slide Images (.svs format) using some probability values?

I am trying to generate heat map, or probability map, for Whole Slide Images (WSIs) using probability values. I have coordinate points (which determine areas on the WSIs) and corresponding probability values.
Basic Introduction on WSI: WSIs are large is size (almost 100000 x 100000 pixels). Hence, can't open these images using normal image viewer. The WSIs are processed using OpenSlide software.
I have seen previous posts in Stack Overflow on related to heat map, but as WSIs are processed in a different way, I am unable to figure out how to apply these solutions. Some examples that I followed: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, etc.
To generate heat map on WSIs, follow below instructions:
First of all Extract image patches and save the coordinates. Use below code for patch extraction. The code require some changes as per the requirements. The code has been copied from: patch extraction code link
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import logging
try:
import Image
except:
from PIL import Image
import math
import numpy as np
import openslide
import os
from time import strftime,gmtime
parser = argparse.ArgumentParser(description='Extract a series of patches from a whole slide image')
parser.add_argument("-i", "--image", dest='wsi', nargs='+', required=True, help="path to a whole slide image")
parser.add_argument("-p", "--patch_size", dest='patch_size', default=299, type=int, help="pixel width and height for patches")
parser.add_argument("-b", "--grey_limit", dest='grey_limit', default=0.8, type=float, help="greyscale value to determine if there is sufficient tissue present [default: `0.8`]")
parser.add_argument("-o", "--output", dest='output_name', default="output", help="Name of the output file directory [default: `output/`]")
parser.add_argument("-v", "--verbose",
dest="logLevel",
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'],
default="INFO",
help="Set the logging level")
args = parser.parse_args()
if args.logLevel:
logging.basicConfig(level=getattr(logging, args.logLevel))
wsi=' '.join(args.wsi)
""" Set global variables """
mean_grey_values = args.grey_limit * 255
number_of_useful_regions = 0
wsi=os.path.abspath(wsi)
outname=os.path.abspath(args.output_name)
basename = os.path.basename(wsi)
level = 0
def main():
img,num_x_patches,num_y_patches = open_slide()
logging.debug('img: {}, num_x_patches = {}, num_y_patches: {}'.format(img,num_x_patches,num_y_patches))
for x in range(num_x_patches):
for y in range(num_y_patches):
img_data = img.read_region((x*args.patch_size,y*args.patch_size),level, (args.patch_size, args.patch_size))
print_pics(x*args.patch_size,y*args.patch_size,img_data,img)
pc_uninformative = number_of_useful_regions/(num_x_patches*num_y_patches)*100
pc_uninformative = round(pc_uninformative,2)
logging.info('Completed patch extraction of {} images.'.format(number_of_useful_regions))
logging.info('{}% of the image is uninformative\n'.format(pc_uninformative))
def print_pics(x_top_left,y_top_left,img_data,img):
if x_top_left % 100 == 0 and y_top_left % 100 == 0 and x_top_left != 0:
pc_complete = round(x_top_left /img.level_dimensions[0][0],2) * 100
logging.info('{:.2f}% Complete at {}'.format(pc_complete,strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())))
exit()
img_data_np = np.array(img_data)
""" Convert to grayscale"""
grey_img = rgb2gray(img_data_np)
if np.mean(grey_img) < mean_grey_values:
logging.debug('Image grayscale = {} compared to threshold {}'.format(np.mean(grey_img),mean_grey_values))
global number_of_useful_regions
number_of_useful_regions += 1
wsi_base = os.path.basename(wsi)
wsi_base = wsi_base.split('.')[0]
img_name = wsi_base + "_" + str(x_top_left) + "_" + str(y_top_left) + "_" + str(args.patch_size)
#write_img_rotations(img_data_np,img_name)
logging.debug('Saving {} {} {}'.format(x_top_left,y_top_left,np.mean(grey_img)))
save_image(img_data_np,1,img_name)
def gen_x_and_y(xlist,ylist,img):
for x in xlist:
for y in ylist:
img_data = img.read_region((x*args.patch_size,y*args.patch_size),level, (args.patch_size, args.patch_size))
yield (x, y,img_data)
def open_slide():
"""
The first level is always the main image
Get width and height tuple for the first level
"""
logging.debug('img: {}'.format(wsi))
img = openslide.OpenSlide(wsi)
img_dim = img.level_dimensions[0]
"""
Determine what the patch size should be, and how many iterations it will take to get through the WSI
"""
num_x_patches = int(math.floor(img_dim[0] / args.patch_size))
num_y_patches = int(math.floor(img_dim[1] / args.patch_size))
remainder_x = img_dim[0] % num_x_patches
remainder_y = img_dim[1] % num_y_patches
logging.debug('The WSI shape is {}'.format(img_dim))
logging.debug('There are {} x-patches and {} y-patches to iterate through'.format(num_x_patches,num_y_patches))
return img,num_x_patches,num_y_patches
def validate_dir_exists():
if os.path.isdir(outname) == False:
os.mkdir(outname)
logging.debug('Validated {} directory exists'.format(outname))
if os.path.exists(wsi):
logging.debug('Found the file {}'.format(wsi))
else:
logging.debug('Could not find the file {}'.format(wsi))
exit()
def rgb2gray(rgb):
"""Converts an RGB image into grayscale """
r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
def save_image(img,j,img_name):
tmp = os.path.join(outname,img_name+"_"+str(j)+".png")
try:
im = Image.fromarray(img)
im.save(tmp)
except:
print('Could not print {}'.format(tmp))
exit()
if __name__ == '__main__':
validate_dir_exists()
main()
Secondly, generate the probability values of each patches.
Finally, replace all the pixel values within a coordinates with the corresponding probability values and display the results using color maps.
This is the basic idea of generating heat map on WSIs. You can modify the code and concept to get a heat map as per your wish.
We have developed a python package for processing whole-slide-images:
https://github.com/amirakbarnejad/PyDmed
Here is a tutorial for getting heatmaps for whole-slide-images:
https://amirakbarnejad.github.io/Tutorial/tutorial_section5.html.
Also here is a sample notebook that gets heatmaps for WSIs using PyDmed:
Link to the sample notebook.
The benefit of PyDmed is that it is multi-processed. The dataloader sends a stream of patches to GPU(s), and the StreamWriter writes to disk in a separate process. Therefore, it is highly efficient. The running time of course depends on the machine, the size of WSIs, etc. On a good machine with a good GPU, PyDmed can generate heatmaps for ~120 WSIs in one day.

Remove unwanted text in logo detection- Image Processing, Computer vision

I am trying to detect logo in invoices. Though I am able to get some results but not sufficient enough to process. While detecting logos, Unwanted text is also getting detected.
The following is from actual invoice:-original Image
and the following results I am getting Image after operations
I am using the`following code which I have written:-
gray=cv2.imread("Image",0)
ret,thresh1 = cv2.threshold(gray,180,255,cv2.THRESH_BINARY)
kernel_logo = np.ones((10,10),np.uint8)
closing_logo = cv2.morphologyEx(thresh1,cv2.MORPH_CLOSE,kernel_logo,
iterations = 1)
n=3
noise_removed_logo = cv2.medianBlur(closing_logo, n)
eroded_logo = cv2.erode(noise_removed_logo,kernel_logo, iterations = 8)
dilated_logo=cv2.dilate(eroded_logo,kernel_logo, iterations=3)
Could you please help me what changes should I make to remove noise from my documented image. I am new to Computer Vision
Few more sample:- Original document
The result I am getting:- Result after operations on document
Hello Mohd Anas Khan .
Your approch to define logo is too simple so it couldn't work. If you want a product-level approach, use some machine learning or deep learning. If you want just some toys, then a simple countours finder with fixed rules should work.
For example, in the following approach i defined "logo" as "the contour which has biggest area". You'll need more rules later, so good luck.
import numpy as np
import cv2
im = cv2.imread('contours_1.jpg')
imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(imgray,127,255, cv2.THRESH_BINARY_INV)
rect_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
threshed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, rect_kernel)
cv2.imwrite("contours_1_thres.jpg", threshed)
im2, contours, hierarchy = cv2.findContours(threshed,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
ws = []
hs = []
areas = []
for contour in contours:
area = cv2.contourArea(contour)
x, y, w, h = cv2.boundingRect(contour)
print("w: {}, h: {}, area: {}".format(w, h, area))
ws.append(w)
hs.append(h)
areas.append(area)
max_idx = np.argmax(areas)
cv2.drawContours(im, [contours[max_idx]], -1, (0, 255, 0), 3)
# cv2.drawContours(im, contours, -1, (0, 255, 0), 3)
cv2.imwrite("contours_1_test.jpg", im)
The output images are as follow : (The detected logo is covered in green box )

Resources