Weighting sentence embedding similarity by frequency/saliency (not TFIDF) - nlp

It seems like the new standard in search is sentence or document similarity, using things like BERT sentence embeddings. However, these don't really have a way to consider the salience of sentences, which can make it hard to compare different searches.
For example, when using concept embeddings I'd like to be able to score "Exam" <-> "Exam" as less important than "Diabetes" <-> "High blood sugar". But obviously, the former has a similarity of 1.
I've tried using weighting with inverse document frequency of terms, but with the latter being unbounded, it's really hard to figure out how to weight similarity and frequency scores.
Has anybody come up with any solutions to this?

Related

How to get sentiment score for a word in a given dataset

I have a sentiment analysis dataset that is labeled in three categories: positive, negative, and neutral. I also have a list of words (mostly nouns), for which I want to calculate the sentiment value, to understand "how" (positively or negatively) these entities were talked about in the dataset. I have read some online resources like blogs and thought about a couple of approaches for calculating the sentiment score for a particular word X.
Calculate how many data instances (sentences) which have the word X in those, have "positive" labels, have "negative" labels, and "neutral" labels. Then, calculate the weighted average sentiment for that word.
Take a generic untrained BERT architecture, and then train it using the dataset. Then, pass each word from the list to that trained model to get the sentiment scores for the word.
Does any of these approaches make sense? If so, can you suggest some related works that I can look at?
If these approaches don't make sense, could you please advise how I can calculate the sentiment score for a word, in a given dataset?
The first method will suffer from the same drawbacks as other bag-of-words models do. Consider that you have a dataset of movie reviews with their sentiment scores, and you want to find the sentiment for a particular actor called X. A label for a sample like "X's acting was the only good thing in an otherwise bad movie" will be negative, but the sentiment towards X is positive. A simple approach like the first one can't handle such cases.
The second approach also does not make much sense, as the BERT models may not perform well without context. You can try using weakly supervised learning which can help in creating token-level labels. Read section 3.3 for this paper to get an idea about this. Disclaimer: I'm one of the authors of this paper.

How to solve difficult sentences for nlp sentiment analysis

Such as the following sentence,
"Don't pay attention to people if they say it's no good."
As humans, we understand the overall sentiment from the sentence is positive.
Technique of "Bag of Words" or BOW
Then, we have the two categories of "positive" words as Polarity of 1, "negative" words of Polarity of 0.
In this case, the word of "good" fits into category, but here it is accidentally correct.
Thus, this technique is eliminated.
Still use BOW technique (sort of "Word Embedding")
But take into consideration of its surrounding words, in this case, the "no" word preceding it, thus, it's "no good", not the adj alone "good". However, "no good" is not what the author intended from the context of the entire sentence.
Thus, this question. Thanks in advance.
Word embeddings are one possible way to try to take into account the complexity coming from the sequence of terms in your example. Using pre-trained models on general English such as BERT should give you interesting results for your sentiment analysis problem. You can leverage on several implementation provided by Hugging face library.
Another approach, that doesn't rely on compute intensive techniques (such as word embeddings), would be to use n-gram which will capture the sequence aspect and should provide good features for sentiment estimation. You can try different depth (unigram, bigrams, trigrams...) and combine with different types of preprocesing and/or tokenizers. Scikit-learn provides a good reference implementation for n-gramss in its CountVectorizer class.

Text representations : How to differentiate between strings of similar topic but opposite polarities?

I have been doing clustering of a certain corpus, and obtaining results that group sentences together by obtaining their tf-idf, checking similarity weights > a certain threshold value from the gensim model.
tfidf_dic = DocSim.get_tf_idf()
ds = DocSim(model,stopwords=stopwords, tfidf_dict=tfidf_dic)
sim_scores = ds.calculate_similarity(source_doc, target_docs)
The problem is that despite putting high threshold values, sentences of similar topics but opposite polarities get clustered together as such:
Here is an example of the similarity weights obtained between "don't like it" & "i like it"
Are there any other methods, libraries or alternative models that can differentiate the polarities effectively by assigning them very low similarities or opposite vectors?
This is so that the outputs "i like it" and "dont like it" are in separate clusters.
PS: Pardon me if there are any conceptual errors as I am rather new to NLP. Thank you in advance!
The problem is in how you represent your documents. Tf-idf is good for representing long documents where keywords play a more important role. Here, it is probably the idf part of tf-idf that disregards the polarity because negative particles like "no" or "not" will appear in most documents and they will always receive a low weight.
I would recommend trying some neural embeddings that might capture the polarity. If you want to keep using Gensim, you can try doc2vec but you would need quite a lot of training data for that. If you don't have much data to estimate the representation, I would use some pre-trained embeddings.
Even averaging word embeddings (you can load FastText embeddings in Gensim). Alternatively, if you want a stronger model, you can try BERT or another large pre-trained model from the Transformers package.
Unfortunately, simple text representations based merely on the sets-of-words don't distinguish such grammar-driven reversals-of-meaning very well.
The method needs to be sensitive to meaningful phrases, and the hierarchical, grammar-driven inter-word dependencies, to model that.
Deeper neural networks using convolutional/recurrent techniques do better, or methods which tree-model sentence-structure.
For ideas see for example...
"Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank"
...or a more recent summary presentation...
"Representations for Language: From Word Embeddings to Sentence Meanings"

Sentence similarity using word2vev

Basically what I want is to know how similar a specific sentence/document is to my training corpus.
I think I might have half an idea of how to approach this but I'm not too sure.
So my idea is to calculate an average vector for the document and then somehow calculating the similarity like that. I just don't know how I would calculate the similarity then.
So say I have a training corpus filled with text about dogs. If I then want to check how similar the sentence, "The airplane has 100 seats.", is to the training corpus I want is to output a low similarity score.
This is a semantic textual similarity problem. You can have a look at state-of-the-art models here https://nlpprogress.com/english/semantic_textual_similarity.html
Usually you would pass your document in an encoder to create a representation (embedding of the document) then do the same with the sentence (usually using the same encoder). The vectors could be fed into further layers for further processing. A similarity metric like cosine could then be used on the vectors (embeddings) or a joint final representation could be used for classification.
You can use some pretrained language models in the encoding step and fine tune them for your use-case.

What's a good measure for classifying text documents?

I have written an application that measures text importance. It takes a text article, splits it into words, drops stopwords, performs stemming, and counts word-frequency and document-frequency. Word-frequency is a measure that counts how many times the given word appeared in all documents, and document-frequency is a measure that counts how many documents the given word appeared.
Here's an example with two text articles:
Article I) "A fox jumps over another fox."
Article II) "A hunter saw a fox."
Article I gets split into words (afters stemming and dropping stopwords):
["fox", "jump", "another", "fox"].
Article II gets split into words:
["hunter", "see", "fox"].
These two articles produce the following word-frequency and document-frequency counters:
fox (word-frequency: 3, document-frequency: 2)
jump (word-frequency: 1, document-frequency: 1)
another (word-frequency: 1, document-frequency: 1)
hunter (word-frequency: 1, document-frequency: 1)
see (word-frequency: 1, document-frequency: 1)
Given a new text article, how do I measure how similar this article is to previous articles?
I've read about df-idf measure but it doesn't apply here as I'm dropping stopwords, so words like "a" and "the" don't appear in the counters.
For example, I have a new text article that says "hunters love foxes", how do I come up with a measure that says this article is pretty similar to ones previously seen?
Another example, I have a new text article that says "deer are funny", then this one is a totally new article and similarity should be 0.
I imagine I somehow need to sum word-frequency and document-frequency counter values but what's a good formula to use?
A standard solution is to apply the Naive Bayes classifier which estimates the posterior probability of a class C given a document D, denoted as P(C=k|D) (for a binary classification problem, k=0 and 1).
This is estimated by computing the priors from a training set of class labeled documents, where given a document D we know its class C.
P(C|D) = P(D|C) * P(D) (1)
Naive Bayes assumes that terms are independent, in which case you can write P(D|C) as
P(D|C) = \prod_{t \in D} P(t|C) (2)
P(t|C) can simply be computed by counting how many times does a term occur in a given class, e.g. you expect that the word football will occur a large number of times in documents belonging to the class (category) sports.
When it comes to the other factor P(D), you can estimate it by counting how many labeled documents are given from each class, may be you have more sports articles than finance ones, which makes you believe that there is a higher likelihood of an unseen document to be classified into the sports category.
It is very easy to incorporate factors, such as term importance (idf), or term dependence into Equation (1). For idf, you add it as a term sampling event from the collection (irrespective of the class).
For term dependence, you have to plugin probabilities of the form P(u|C)*P(u|t), which means that you sample a different term u and change (transform) it to t.
Standard implementations of Naive Bayes classifier can be found in the Stanford NLP package, Weka and Scipy among many others.
It seems that you are trying to answer several related questions:
How to measure similarity between documents A and B? (Metric learning)
How to measure how unusual document C is, compared to some collection of documents? (Anomaly detection)
How to split a collection of documents into groups of similar ones? (Clustering)
How to predict to which class a document belongs? (Classification)
All of these problems are normally solved in 2 steps:
Extract the features: Document --> Representation (usually a numeric vector)
Apply the model: Representation --> Result (usually a single number)
There are lots of options for both feature engineering and modeling. Here are just a few.
Feature extraction
Bag of words: Document --> number of occurences of each individual word (that is, term frequencies). This is the basic option, but not the only one.
Bag of n-grams (on word-level or character-level): co-occurence of several tokens is taken into account.
Bag of words + grammatic features (e.g. POS tags)
Bag of word embeddings (learned by an external model, e.g. word2vec). You can use embedding as a sequence or take their weighted average.
Whatever you can invent (e.g. rules based on dictionary lookup)...
Features may be preprocessed in order to decrease relative amount of noise in them. Some options for preprocessing are:
dividing by IDF, if you don't have a hard list of stop words or believe that words might be more or less "stoppy"
normalizing each column (e.g. word count) to have zero mean and unit variance
taking logs of word counts to reduce noise
normalizing each row to have L2 norm equal to 1
You cannot know in advance which option(s) is(are) best for your specific application - you have to do experiments.
Now you can build the ML model. Each of 4 problems has its own good solutions.
For classification, the best studied problem, you can use multiple kinds of models, including Naive Bayes, k-nearest-neighbors, logistic regression, SVM, decision trees and neural networks. Again, you cannot know in advance which would perform best.
Most of these models can use almost any kind of features. However, KNN and kernel-based SVM require your features to have special structure: representations of documents of one class should be close to each other in sense of Euclidean distance metric. This sometimes can be achieved by simple linear and/or logarithmic normalization (see above). More difficult cases require non-linear transformations, which in principle may be learned by neural networks. Learning of these transformations is something people call metric learning, and in general it is an problem which is not yet solved.
The most conventional distance metric is indeed Euclidean. However, other distance metrics are possible (e.g. manhattan distance), or different approaches, not based on vector representations of texts. For example, you can try to calculate Levenstein distance between texts, based on count of number of operations needed to transform one text to another. Or you can calculate "word mover distance" - the sum of distances of word pairs with closest embeddings.
For clustering, basic options are K-means and DBScan. Both these models require your feature space have this Euclidean property.
For anomaly detection you can use density estimations, which are produced by various probabilistic algorithms: classification (e.g. naive Bayes or neural networks), clustering (e.g. mixture of gaussian models), or other unsupervised methods (e.g. probabilistic PCA). For texts, you can exploit the sequential language structure, estimating probabilitiy of each word conditional on the previous words (using n-grams or convolutional/recurrent neural nets) - this is called language models, and it is usually more efficient than bag-of-word assumption of Naive Bayes, which ignores word order. Several language models (one for each class) may be combined into one classifier.
Whatever problem you solve, it is strongly recommended to have a good test set with the known "ground truth": which documents are close to each other, or belong to the same class, or are (un)usual. With this set, you can evaluate different approaches to feature engineering and modelling, and choose the best one.
If you don't have resourses or willingness to do multiple experiments, I would recommend to choose one of the following approaches to evaluate similarity between texts:
word counts + idf normalization + L2 normalization (equivalent to the solution of #mcoav) + Euclidean distance
mean word2vec embedding over all words in text (the embedding dictionary may be googled up and downloaded) + Euclidean distance
Based on one of these representations, you can build models for the other problems - e.g. KNN for classifications or k-means for clustering.
I would suggest tf-idf and cosine similarity.
You can still use tf-idf if you drop out stop-words. It is even probable that whether you include stop-words or not would not make such a difference: the Inverse Document Frequency measure automatically downweighs stop-words since they are very frequent and appear in most documents.
If your new document is entirely made of unknown terms, the cosine similarity will be 0 with every known document.
When I search on df-idf I find nothing.
tf-idf with cosine similarity is very accepted and common practice
Filtering out stop words does not break it. For common words idf gives them low weight anyway.
tf-idf is used by Lucene.
Don't get why you want to reinvent the wheel here.
Don't get why you think the sum of df idf is a similarity measure.
For classification do you have some predefined classes and sample documents to learn from? If so can use Naive Bayes. With tf-idf.
If you don't have predefined classes you can use k means clustering. With tf-idf.
It depend a lot on your knowledge of the corpus and classification objective. In like litigation support documents produced to you, you have and no knowledge of. In Enron they used names of raptors for a lot of the bad stuff and no way you would know that up front. k means lets the documents find their own clusters.
Stemming does not always yield better classification. If you later want to highlight the hits it makes that very complex and the stem will not be the length of the word.
Have you evaluated sent2vec or doc2vec approaches? You can play around with the vectors to see how close the sentences are. Just an idea. Not a verified solution to your question.
While in English a word alone may be enough, it isn't the case in some other more complex languages.
A word has many meanings, and many different uses cases. One text can talk about the same things while using fews to none matching words.
You need to find the most important words in a text. Then you need to catch their possible synonyms.
For that, the following api can help. It is doable to create something similar with some dictionaries.
synonyms("complex")
function synonyms(me){
var url = 'https://api.datamuse.com/words?ml=' + me;
fetch(url).then(v => v.json()).then((function(v){
syn = JSON.stringify(v)
syn = JSON.parse(syn)
for(var k in syn){
document.body.innerHTML += "<span>"+syn[k].word+"</span> "
}
})
)
}
From there comparing arrays will give much more accuracy, much less false positive.
A sufficient solution, in a possibly similar task:
Use of a binary bag-of-word (BOW) approach for the vector representation (frequent words aren't higher weighted than seldom words), rather than a real TF approach
The embedding "word2vec" approach, is sensitive to sequence and distances effects. It might make - depending on your hyper-parameters - a difference between 'a hunter saw a fox' and 'a fox saw a jumping hunter' ... so you have to decide, if this means adding noise to your task - or, alternatively, to use it as an averaged vector only, over all of your text
Extract high within-sentence-correlation words ( e.g., by using variables- mean-normalized- cosine-similaritities )
Second Step: Use this list of high-correlated words, as a positive list, i.e. as new vocab for an new binary vectorizer
This isolated meaningful words for the 2nd step cosine comparisons - in my case, even for rather small amounts of training texts

Resources