I have a spark Scala job running in EMR that I am trying to improve. As of right now it runs on m5.8xlarge with no issues. I recently tried upgrading to the Graviton based EC2 instances m6g.8xlarge and while the job does succeed, I am seeing some weird issues. Some of the issues I see is tasks failing due to a timeout, stages running in a strange order, and it looks like the memory is strained. The stage that runs out of order is the one with failed tasks, stage 6 runs then fails, then stages 4 & 5 complete, and then stage 6 retry succeeds. In the m5.8xlarge run that currently is working, stages 4 & 5 get skipped. I'm not sure why this is happening since the only change I made was going from an m5 instance type to an m6g, so I wanted to see if anyone experienced something similar or has solutions. I will also post some of the errors from the failed tasks, but I think they are related to the oom.
Here is the main error I am seeing:
ERROR TransportClientFactory:261 - Exception while bootstrapping client after 60041 ms
java.lang.RuntimeException: java.util.concurrent.TimeoutException: Timeout waiting for task.
at org.spark_project.guava.base.Throwables.propagate(Throwables.java:160)
at org.apache.spark.network.client.TransportClient.sendRpcSync(TransportClient.java:263)
at org.apache.spark.network.sasl.SaslClientBootstrap.doBootstrap(SaslClientBootstrap.java:70)
at org.apache.spark.network.crypto.AuthClientBootstrap.doSaslAuth(AuthClientBootstrap.java:116)
at org.apache.spark.network.crypto.AuthClientBootstrap.doBootstrap(AuthClientBootstrap.java:89)
at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:257)
at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:187)
at org.apache.spark.network.shuffle.ExternalShuffleClient.lambda$fetchBlocks$0(ExternalShuffleClient.java:100)
at org.apache.spark.network.shuffle.RetryingBlockFetcher.fetchAllOutstanding(RetryingBlockFetcher.java:141)
at org.apache.spark.network.shuffle.RetryingBlockFetcher.start(RetryingBlockFetcher.java:121)
at org.apache.spark.network.shuffle.ExternalShuffleClient.fetchBlocks(ExternalShuffleClient.java:109)
at org.apache.spark.storage.ShuffleBlockFetcherIterator.sendRequest(ShuffleBlockFetcherIterator.scala:264)
at org.apache.spark.storage.ShuffleBlockFetcherIterator.org$apache$spark$storage$ShuffleBlockFetcherIterator$$send$1(ShuffleBlockFetcherIterator.scala:614)
at org.apache.spark.storage.ShuffleBlockFetcherIterator.fetchUpToMaxBytes(ShuffleBlockFetcherIterator.scala:609)
at org.apache.spark.storage.ShuffleBlockFetcherIterator.initialize(ShuffleBlockFetcherIterator.scala:442)
at org.apache.spark.storage.ShuffleBlockFetcherIterator.<init>(ShuffleBlockFetcherIterator.scala:160)
at org.apache.spark.shuffle.BlockStoreShuffleReader.read(BlockStoreShuffleReader.scala:66)
at org.apache.spark.sql.execution.ShuffledRowRDD.compute(ShuffledRowRDD.scala:173)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:105)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1405)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
Caused by: java.util.concurrent.TimeoutException: Timeout waiting for task.
at org.spark_project.guava.util.concurrent.AbstractFuture$Sync.get(AbstractFuture.java:276)
at org.spark_project.guava.util.concurrent.AbstractFuture.get(AbstractFuture.java:96)
at org.apache.spark.network.client.TransportClient.sendRpcSync(TransportClient.java:259)
... 39 more
I think this is not an out of memory problem.
Both m6g.8xlarge and m5.8xlarge have 120 GB of memory following their specs:
https://aws.amazon.com/ec2/instance-types/m6g and https://aws.amazon.com/ec2/instance-types/m5
I see in the backtrace that the timeout is during the authentication process:
First it fails to authenticate with Spark's auth protocol in doBootstrap(AuthClientBootstrap.java:89
https://github.com/apache/spark/blob/master/common/network-common/src/main/java/org/apache/spark/network/crypto/AuthClientBootstrap.java#L99
Bootstraps a {#link TransportClient} by performing authentication using Spark's auth protocol.
This bootstrap falls back to using the SASL bootstrap if the server throws an error during authentication, and the configuration allows it. This is used for backwards compatibility with external shuffle services that do not support the new protocol.
and then it also fails to authenticate with SASL in doBootstrap(SaslClientBootstrap.java:70
https://github.com/apache/spark/blob/master/common/network-common/src/main/java/org/apache/spark/network/sasl/SaslClientBootstrap.java#L54
Bootstraps a {#link TransportClient} by performing SASL authentication on the connection. The server should be setup with a {#link SaslRpcHandler} with matching keys for the given appId.
Performs SASL authentication by sending a token, and then proceeding with the SASL challenge-response tokens until we either successfully authenticate or throw an exception due to mismatch.
Related
Versions
Spark:: 2.4.0
Neo4j:: Neo4j Community Version 3.5.6
Problem Statement:
I am trying to connect spark shell with the Neo4j Community server. Everything is being run locally. The end goal that I am trying to achieve is that I want to query the Neo4j and load the data in the form of rdds. Later on I want to convert these rdds to Json Structure. I am using this connector https://github.com/neo4j-contrib/neo4j-spark-connector
But at the moment I am facing authentication Problems with the Neo4j Server. When I execute basic commands to make connection and set the Neo4j context. They seems to work fine but when I try to run rdd.count or rdd.first.schema.fieldName I run into authentication errors that client is not authenticated.
Spark Shell Commands:
spark-shell --master spark://10.62.10.71:7077 --conf spark.neo4j.bolt.username=neo4j spark.neo4j.bolt.password=<password> --jars C:/Users/khalid-admin/Desktop/jar_files/neo4j-spark-connector-full-2.4.0-M6
import org.neo4j.spark._
val neo = Neo4j(sc)
val rdd = neo.cypher("MATCH (n:Person) RETURN id(n) as id ").loadRowRdd
Image:
Error:
[Stage 0:> (0 + 1) / 1]2019-08-22 00:25:17 WARN TaskSetManager:66 - Lost task 0.0 in stage 0.0 (TID 0, 10.62.10.71, executor 0): org.neo4j.driver.v1.exceptions.AuthenticationException: The client is unauthorized due to authentication failure.
at org.neo4j.driver.internal.util.Futures.blockingGet(Futures.java:122)
at org.neo4j.driver.internal.DriverFactory.verifyConnectivity(DriverFactory.java:346)
at org.neo4j.driver.internal.DriverFactory.newInstance(DriverFactory.java:93)
at org.neo4j.driver.v1.GraphDatabase.driver(GraphDatabase.java:136)
at org.neo4j.driver.v1.GraphDatabase.driver(GraphDatabase.java:119)
at org.neo4j.spark.Neo4jConfig.driver(Neo4jConfig.scala:15)
at org.neo4j.spark.Neo4jConfig.driver(Neo4jConfig.scala:19)
at org.neo4j.spark.Executor$.execute(Neo4j.scala:394)
at org.neo4j.spark.Neo4jRDD.compute(Neo4j.scala:458)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Suppresse
Steps Tried so far:
So far I have tried the following steps:
I have made sure that I am not using default credentials of the
Neo4j.
When I first login in the Neo4j Browser, It prompted me for
a Change Password window and I changed my password. Everything else seems to be working fine.
Can anybody guide what further steps I can take to narrow down the problem?
I have been trying Spark 2.4 deployment on k8s and want to establish a secured RPC communication channel between driver and executors. Was using the following configuration parameters as part of spark-submit
spark.authenticate true
spark.authenticate.secret good
spark.network.crypto.enabled true
spark.network.crypto.keyFactoryAlgorithm PBKDF2WithHmacSHA1
spark.network.crypto.saslFallback false
The driver and executors were not able to communicate on a secured channel and were throwing the following errors.
Exception in thread "main" java.lang.reflect.UndeclaredThrowableException
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1713)
at org.apache.spark.deploy.SparkHadoopUtil.runAsSparkUser(SparkHadoopUtil.scala:64)
at org.apache.spark.executor.CoarseGrainedExecutorBackend$.run(CoarseGrainedExecutorBackend.scala:188)
at org.apache.spark.executor.CoarseGrainedExecutorBackend$.main(CoarseGrainedExecutorBackend.scala:281)
at org.apache.spark.executor.CoarseGrainedExecutorBackend.main(CoarseGrainedExecutorBackend.scala)
Caused by: org.apache.spark.SparkException: Exception thrown in awaitResult:
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:226)
at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:75)
at org.apache.spark.rpc.RpcEnv.setupEndpointRefByURI(RpcEnv.scala:101)
at org.apache.spark.executor.CoarseGrainedExecutorBackend$$anonfun$run$1.apply$mcV$sp(CoarseGrainedExecutorBackend.scala:201)
at org.apache.spark.deploy.SparkHadoopUtil$$anon$2.run(SparkHadoopUtil.scala:65)
at org.apache.spark.deploy.SparkHadoopUtil$$anon$2.run(SparkHadoopUtil.scala:64)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)
... 4 more
Caused by: java.lang.RuntimeException: java.lang.IllegalArgumentException: Unknown challenge message.
at org.apache.spark.network.crypto.AuthRpcHandler.receive(AuthRpcHandler.java:109)
at org.apache.spark.network.server.TransportRequestHandler.processRpcRequest(TransportRequestHandler.java:181)
at org.apache.spark.network.server.TransportRequestHandler.handle(TransportRequestHandler.java:103)
at org.apache.spark.network.server.TransportChannelHandler.channelRead(TransportChannelHandler.java:118)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
Can someone guide me on this?
Disclaimer: I do not have a very deep understanding of spark implementation, so, be careful when using the workaround described below.
AFAIK, spark does not have support for auth/encryption for k8s in 2.4.0 version.
There is a ticket, which is already fixed and likely will be released in a next spark version: https://issues.apache.org/jira/browse/SPARK-26239
The problem is that spark executors try to open connection to a driver, and a configuration will be sent only using this connection. Although, an executor creates the connection with default config AND system properties started with "spark.".
For reference, here is the place where executor opens the connection: https://github.com/apache/spark/blob/5fa4384/core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala#L201
Theoretically, if you would set spark.executor.extraJavaOptions=-Dspark.authenticate=true -Dspark.network.crypto.enabled=true ..., it should help, although driver checks that there are no spark parameters set in extraJavaOptions.
Although, there is a workaround (a little bit hacky): you can set spark.executorEnv.JAVA_TOOL_OPTIONS=-Dspark.authenticate=true -Dspark.network.crypto.enabled=true .... Spark does not check this parameter, but JVM uses this env variable to add this parameter to properties.
Also, instead of using JAVA_TOOL_OPTIONS to pass secret, I would recommend to use spark.executorEnv._SPARK_AUTH_SECRET=<secret>.
I have a cluster with CDH 5.8.4. I'm runnin a spark streaming application which reads and writes data from/to HBase by using the cloudera spark-hbase connector namely the HBaseContext.
When I start the application I give the principal and the kinit to the spark-submit script.
I'm seeing that after 7 days the application crashed with an error about the expiration of the ticket kerberos related to the HBase context. This is the error from the executors log:
ERROR executor.Executor: Exception in task 0.0 in stage 544265.0 (TID 1149098)
org.apache.hadoop.hbase.client.RetriesExhaustedException: Can't get the location
at org.apache.hadoop.hbase.client.RpcRetryingCallerWithReadReplicas.getRegionLocations(RpcRetryingCallerWithReadReplicas.java
:326)
at org.apache.hadoop.hbase.client.ScannerCallableWithReplicas.call(ScannerCallableWithReplicas.java:157)
at org.apache.hadoop.hbase.client.ScannerCallableWithReplicas.call(ScannerCallableWithReplicas.java:61)
at org.apache.hadoop.hbase.client.RpcRetryingCaller.callWithoutRetries(RpcRetryingCaller.java:200)
at org.apache.hadoop.hbase.client.ClientScanner.call(ClientScanner.java:320)
at org.apache.hadoop.hbase.client.ClientScanner.nextScanner(ClientScanner.java:295)
at org.apache.hadoop.hbase.client.ClientScanner.initializeScannerInConstruction(ClientScanner.java:160)
at org.apache.hadoop.hbase.client.ClientScanner.<init>(ClientScanner.java:155)
at org.apache.hadoop.hbase.client.HTable.getScanner(HTable.java:867)
at org.apache.hadoop.hbase.mapreduce.TableRecordReaderImpl.restart(TableRecordReaderImpl.java:91)
at org.apache.hadoop.hbase.mapreduce.TableRecordReaderImpl.initialize(TableRecordReaderImpl.java:169)
at org.apache.hadoop.hbase.mapreduce.TableRecordReader.initialize(TableRecordReader.java:134)
at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase$1.initialize(TableInputFormatBase.java:211)
at org.apache.spark.rdd.NewHadoopRDD$$anon$1.<init>(NewHadoopRDD.scala:164)
at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:129)
at org.apache.hadoop.hbase.spark.NewHBaseRDD.compute(NewHBaseRDD.scala:34)
at org.apache.hadoop.hbase.spark.NewHBaseRDD.compute(NewHBaseRDD.scala:25)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.hadoop.security.token.SecretManager$InvalidToken: Token has expired
at sun.reflect.GeneratedConstructorAccessor58.newInstance(Unknown Source)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.apache.hadoop.ipc.RemoteException.instantiateException(RemoteException.java:106)
at org.apache.hadoop.ipc.RemoteException.unwrapRemoteException(RemoteException.java:95)
at org.apache.hadoop.hbase.protobuf.ProtobufUtil.getRemoteException(ProtobufUtil.java:327)
at org.apache.hadoop.hbase.protobuf.ProtobufUtil.getRowOrBefore(ProtobufUtil.java:1593)
at org.apache.hadoop.hbase.client.ConnectionManager$HConnectionImplementation.locateRegionInMeta(ConnectionManager.java:1398)
at org.apache.hadoop.hbase.client.ConnectionManager$HConnectionImplementation.locateRegion(ConnectionManager.java:1199)
at org.apache.hadoop.hbase.client.RpcRetryingCallerWithReadReplicas.getRegionLocations(RpcRetryingCallerWithReadReplicas.java:315)
... 30 more
Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.token.SecretManager$InvalidToken): Token has expired
at org.apache.hadoop.hbase.security.HBaseSaslRpcClient.readStatus(HBaseSaslRpcClient.java:155)
at org.apache.hadoop.hbase.security.HBaseSaslRpcClient.saslConnect(HBaseSaslRpcClient.java:222)
at org.apache.hadoop.hbase.ipc.RpcClientImpl$Connection.setupSaslConnection(RpcClientImpl.java:617)
at org.apache.hadoop.hbase.ipc.RpcClientImpl$Connection.access$700(RpcClientImpl.java:162)
at org.apache.hadoop.hbase.ipc.RpcClientImpl$Connection$2.run(RpcClientImpl.java:743)
at org.apache.hadoop.hbase.ipc.RpcClientImpl$Connection$2.run(RpcClientImpl.java:740)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1783)
at org.apache.hadoop.hbase.ipc.RpcClientImpl$Connection.setupIOstreams(RpcClientImpl.java:740)
at org.apache.hadoop.hbase.ipc.RpcClientImpl$Connection.writeRequest(RpcClientImpl.java:906)
at org.apache.hadoop.hbase.ipc.RpcClientImpl$Connection.tracedWriteRequest(RpcClientImpl.java:873)
at org.apache.hadoop.hbase.ipc.RpcClientImpl.call(RpcClientImpl.java:1242)
at org.apache.hadoop.hbase.ipc.AbstractRpcClient.callBlockingMethod(AbstractRpcClient.java:227)
at org.apache.hadoop.hbase.ipc.AbstractRpcClient$BlockingRpcChannelImplementation.callBlockingMethod(AbstractRpcClient.java:336)
at org.apache.hadoop.hbase.protobuf.generated.ClientProtos$ClientService$BlockingStub.get(ClientProtos.java:34070)
at org.apache.hadoop.hbase.protobuf.ProtobufUtil.getRowOrBefore(ProtobufUtil.java:1589)
Does anyone knows how to solve this issue?
Thanks in advance,
Beniamino
We (Splice Machine) had the same issue with a customer. Our issue was caused by https://issues.apache.org/jira/browse/SPARK-12646. We wrote some code to fix the _HOST issue and we also upgraded to Spark 2.2 to get around this issue.
You should not rely on an external ticket cache for distributed jobs. The best solution is to ship a keytab with your application or rely on a keytab being deployed on all nodes where your Spark task may be executed.
UserGroupInformation.loginUserFromKeytab("name#xyz.com", keyTab);
connection=ConnectionFactory.createConnection(conf);
With your approach above, you would need to do something like the following after obtaining the UserGroupInformation instance:
ugi.doAs(new PrivilegedAction<Void>() {
public Void run() {
connection = ConnectionFactory.createConnection(conf);
...
return null;
}
});
In my spark application which is run in a cluster mode, I get below exception. I know somehow this coud be due to emery issue. But as the error says, it can not connect to a node. But I ma sure the node is available and it can be connected. Can anyone know what is the main cause of this error and how to resolve it?
17/10/31 17:10:54 ERROR ShuffleBlockFetcherIterator: Failed to get block(s) from AUPER01-02-10-12-0.prod.vroc.com.au:36787
java.io.IOException: Failed to connect to AUPER01-02-10-12-0.prod.vroc.com.au/192.168.11.22:36787
at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:232)
at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:182)
at org.apache.spark.network.netty.NettyBlockTransferService$$anon$1.createAndStart(NettyBlockTransferService.scala:97)
at org.apache.spark.network.shuffle.RetryingBlockFetcher.fetchAllOutstanding(RetryingBlockFetcher.java:141)
at org.apache.spark.network.shuffle.RetryingBlockFetcher.access$200(RetryingBlockFetcher.java:43)
at org.apache.spark.network.shuffle.RetryingBlockFetcher$1.run(RetryingBlockFetcher.java:171)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)
at java.lang.Thread.run(Thread.java:745)
Caused by: io.netty.channel.AbstractChannel$AnnotatedConnectException: Connection refused: AUPER01-02-10-12-0.prod.vroc.com.au/192.168.11.22:36787
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717)
at io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel.java:257)
at io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnect(AbstractNioChannel.java:291)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:631)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:566)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:480)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:442)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:131)
... 2 more
It appears that one of the executors died while the other executors tried to pull blocks from earlier shuffle stages to complete a Spark job.
Right after you've spark-submited a Spark application to a cluster, the application gets a set of machines for executors. They are responsible for executing tasks and caching their results (in memory and/or disk).
Every executor has its own BlockManager that is responsible for managing datasets (as blocks).
The BlockManagers in a Spark application have all to be available or the Spark application will re-trigger task execution.
ShuffleBlockFetcherIterator is a Scala Iterator that fetches multiple shuffle blocks (aka shuffle map outputs) from local and remote BlockManagers.
I keep getting the the following exception very frequently and I wonder why this is happening? After researching I found I could do .set("spark.submit.deployMode", "nio"); but that did not work either and I am using spark 2.0.0
WARN TransportChannelHandler: Exception in connection from /172.31.3.245:46014
java.io.IOException: Connection reset by peer
at sun.nio.ch.FileDispatcherImpl.read0(Native Method)
at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39)
at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223)
at sun.nio.ch.IOUtil.read(IOUtil.java:192)
at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:380)
at io.netty.buffer.PooledUnsafeDirectByteBuf.setBytes(PooledUnsafeDirectByteBuf.java:221)
at io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:898)
at io.netty.channel.socket.nio.NioSocketChannel.doReadBytes(NioSocketChannel.java:242)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:119)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:112)
I was getting the same error even if I tried many things.My job used to get stuck throwing this error after running a very long time. I tried few work around which helped me to resolve. Although, I still get the same error by at least my job runs fine.
one reason could be the executors kills themselves thinking that they lost the connection from the master. I added the below configurations in spark-defaults.conf file.
spark.network.timeout 10000000
spark.executor.heartbeatInterval 10000000
basically,I have increased the network timeout and heartbeat interval
The particular step which used to get stuck, I just cached the dataframe that is used for processing (in the step which used to get stuck)
Note:- These are work arounds, I still see the same error in error logs but the my job does not get terminated.