Related
I have two datasets of images - indoors and outdoors, they don't have the same number of examples.
Each dataset has images that contain a certain number of classes (minimum 1 maximum 4), these classes can appear in both datasets, and each class has 4 categories - red, blue, green, white.
Example:
Indoor - cats, dogs, horses
Outdoor - dogs, humans
I am trying to train a model, where I tell it, "here is an image that contains a cat, tell me it's color" regardless of where it was taken (Indoors, outdoors, In a car, on the moon)
To do that,
I need to present my model examples so that every batch has only one category (cat, dog, horse or human), but I want to sample from all datasets (two in this case) that contains these objects and mix them. How can I do this?
It has to take into account that the number of examples in each dataset is different, and that some categories appear in one dataset where others can appear in more than one.
and each batch must contain only one category.
I would appreciate any help, I have been trying to solve this for a few days now.
Assuming the question is:
Combine 2+ data sets with potentially overlapping categories of objects (distinguishable by label)
Each object has 4 "subcategories" for each color (distinguishable by label)
Each batch should only contain a single object category
The first step will be to ensure consistency of the object labels from both data sets, if not already consistent. For example, if the dog class is label 0 in the first data set but label 2 in the second data set, then we need to make sure the two dog categories are correctly merged. We can do this "translation" with a simple data set wrapper:
class TranslatedDataset(Dataset):
"""
Args:
dataset: The original dataset.
translate_label: A lambda (function) that maps the original
dataset label to the label it should have in the combined data set
"""
def __init__(self, dataset, translate_label):
super().__init__()
self._dataset = dataset
self._translate_label = translate_label
def __len__(self):
return len(self._dataset)
def __getitem__(self, idx):
inputs, target = self._dataset[idx]
return inputs, self._translate_label(target)
The next step is combining the translated data sets together, which can be done easily with a ConcatDataset:
first_original_dataset = ...
second_original_dataset = ...
first_translated = TranslateDataset(
first_original_dataset,
lambda y: 0 if y is 2 else 2 if y is 0 else y, # or similar
)
second_translated = TranslateDataset(
second_original_dataset,
lambda y: y, # or similar
)
combined = ConcatDataset([first_translated, second_translated])
Finally, we need to restrict batch sampling to the same class, which is possible with a custom Sampler when creating the data loader.
class SingleClassSampler(torch.utils.data.Sampler):
def __init__(self, dataset, batch_size):
super().__init__()
# We need to create sequential groups
# with batch_size elements from the same class
indices_for_target = {} # dict to store a list of indices for each target
for i, (_, target) in enumerate(dataset):
# converting to string since Tensors hash by reference, not value
str_targ = str(target)
if str_targ not in indices_for_target:
indices_for_target[str_targ] = []
indices_for_target[str_targ] += [i]
# make sure we have a whole number of batches for each class
trimmed = {
k: v[:-(len(v) % batch_size)]
for k, v in indices_for_target.items()
}
# concatenate the lists of indices for each class
self._indices = sum(list(trimmed.values()))
def __len__(self):
return len(self._indices)
def __iter__(self):
yield from self._indices
Then to use the sampler:
loader = DataLoader(
combined,
sampler=SingleClassSampler(combined, 64),
batch_size=64,
shuffle=True
)
I haven't run this code, so it might not be exactly right, but hopefully it will put you on the right track.
torch.utils.data Docs
In pytorch, DataLoader will split a dataset into batches of set size with additional options of shuffling etc, which one can then loop over.
But if I need the batch size to increment, such as first 10 batch of size 50, next 5 batch of size 100 and so on, what's the best way of doing so?
I tried splitting the tensor then concat them:
#10x50 + 5*100
originalTensor = torch.randn(1000, 80)
split1=torch.split(originalTensor, 500, dim=0)
split2=torch.split(list(split1)[0], 100, dim=0)
Thereafter is there a way to pass the concatenated tensor into dataLoader or any other way to directly turn the concat tensor into a generator (which might lose shuffling and other functionalities)?
I think you can do that by simply providing a non-default batch_sampler to your DataLoader.
For instance:
class VaryingSizeBatchSampler(Sampler):
r"""Wraps another sampler to yield a varying-size mini-batch of indices.
Args:
sampler (Sampler): Base sampler.
batch_size_fn (function): Size of current mini-batch.
drop_last (bool): If ``True``, the sampler will drop the last batch if
its size would be less than ``batch_size``
"""
def __init__(self, sampler, batch_size_fn, drop_last):
if not isinstance(sampler, Sampler):
raise ValueError("sampler should be an instance of "
"torch.utils.data.Sampler, but got sampler={}"
.format(sampler))
self.sampler = sampler
self.batch_size_fn = batch_size_fn
self.drop_last = drop_last
self.batch_counter = 0
def __iter__(self):
batch = []
cur_batch_size = self.batch_size_fn(self.batch_counter) # get current batch size
for idx in self.sampler:
batch.append(idx)
if len(batch) == cur_batch_size:
yield batch
self.batch_counter += 1
cur_batch_size = self.batch_size_fn(self.batch_counter) # get current batch size
batch = []
if len(batch) > 0 and not self.drop_last:
yield batch
def __len__(self):
raise NotImplementedError('You need to implement it yourself!')
I am currently working on patch based super-resolution. Most of the papers divide an image into smaller patches and then use the patches as input to the models.I was able to create patches using custom dataloader. The code is given below:
import torch.utils.data as data
from torchvision.transforms import CenterCrop, ToTensor, Compose, ToPILImage, Resize, RandomHorizontalFlip, RandomVerticalFlip
from os import listdir
from os.path import join
from PIL import Image
import random
import os
import numpy as np
import torch
def is_image_file(filename):
return any(filename.endswith(extension) for extension in [".png", ".jpg", ".jpeg", ".bmp"])
class TrainDatasetFromFolder(data.Dataset):
def __init__(self, dataset_dir, patch_size, is_gray, stride):
super(TrainDatasetFromFolder, self).__init__()
self.imageHrfilenames = []
self.imageHrfilenames.extend(join(dataset_dir, x)
for x in sorted(listdir(dataset_dir)) if is_image_file(x))
self.is_gray = is_gray
self.patchSize = patch_size
self.stride = stride
def _load_file(self, index):
filename = self.imageHrfilenames[index]
hr = Image.open(self.imageHrfilenames[index])
downsizes = (1, 0.7, 0.45)
downsize = 2
w_ = int(hr.width * downsizes[downsize])
h_ = int(hr.height * downsizes[downsize])
aug = Compose([Resize([h_, w_], interpolation=Image.BICUBIC),
RandomHorizontalFlip(),
RandomVerticalFlip()])
hr = aug(hr)
rv = random.randint(0, 4)
hr = hr.rotate(90*rv, expand=1)
filename = os.path.splitext(os.path.split(filename)[-1])[0]
return hr, filename
def _patching(self, img):
img = ToTensor()(img)
LR_ = Compose([ToPILImage(), Resize(self.patchSize//2, interpolation=Image.BICUBIC), ToTensor()])
HR_p, LR_p = [], []
for i in range(0, img.shape[1] - self.patchSize, self.stride):
for j in range(0, img.shape[2] - self.patchSize, self.stride):
temp = img[:, i:i + self.patchSize, j:j + self.patchSize]
HR_p += [temp]
LR_p += [LR_(temp)]
return torch.stack(LR_p),torch.stack(HR_p)
def __getitem__(self, index):
HR_, filename = self._load_file(index)
LR_p, HR_p = self._patching(HR_)
return LR_p, HR_p
def __len__(self):
return len(self.imageHrfilenames)
Suppose the batch size is 1, it takes an image and gives an output of size [x,3,patchsize,patchsize]. When batch size is 2, I will have two different outputs of size [x,3,patchsize,patchsize] (for example image 1 may give[50,3,patchsize,patchsize], image 2 may give[75,3,patchsize,patchsize] ). To handle this a custom collate function was required that stacks these two outputs along dimension 0. The collate function is given below:
def my_collate(batch):
data = torch.cat([item[0] for item in batch],dim = 0)
target = torch.cat([item[1] for item in batch],dim = 0)
return [data, target]
This collate function concatenates along x (From the above example, I finally get [125,3,patchsize,pathsize]. For training purposes, I need to train the model using a minibatch size of say 25. Is there any method or any functions which I can use to directly get an output of size [25 , 3, patchsize, pathsize] directly from the dataloader using the necessary number of images as input to the Dataloader?
The following code snippet works for your purpose.
First, we define a ToyDataset which takes in a list of tensors (tensors) of variable length in dimension 0. This is similar to the samples returned by your dataset.
import torch
from torch.utils.data import Dataset
from torch.utils.data.sampler import RandomSampler
class ToyDataset(Dataset):
def __init__(self, tensors):
self.tensors = tensors
def __getitem__(self, index):
return self.tensors[index]
def __len__(self):
return len(tensors)
Secondly, we define a custom data loader. The usual Pytorch dichotomy to create datasets and data loaders is roughly the following: There is an indexed dataset, to which you can pass an index and it returns the associated sample from the dataset. There is a sampler which yields an index, there are different strategies to draw indices which give rise to different samplers. The sampler is used by a batch_sampler to draw multiple indices at once (as many as specified by batch_size). There is a dataloader which combines sampler and dataset to let you iterate over a dataset, importantly the data loader also owns a function (collate_fn) which specifies how the multiple samples retrieved from the dataset using the indices from the batch_sampler should be combined. For your use case, the usual PyTorch dichotomy does not work well, because instead of drawing a fixed number of indices, we need to draw indices until the objects associated with the indices exceed the cumulative size we desire. This means we need immediate inspection of the objects and use this knowledge to decide whether to return a batch or keep drawing indices. This is what the custom data loader below does:
class CustomLoader(object):
def __init__(self, dataset, my_bsz, drop_last=True):
self.ds = dataset
self.my_bsz = my_bsz
self.drop_last = drop_last
self.sampler = RandomSampler(dataset)
def __iter__(self):
batch = torch.Tensor()
for idx in self.sampler:
batch = torch.cat([batch, self.ds[idx]])
while batch.size(0) >= self.my_bsz:
if batch.size(0) == self.my_bsz:
yield batch
batch = torch.Tensor()
else:
return_batch, batch = batch.split([self.my_bsz,batch.size(0)-self.my_bsz])
yield return_batch
if batch.size(0) > 0 and not self.drop_last:
yield batch
Here we iterate over the dataset, after drawing an index and loading the associated object, we concatenate it to the tensors we drew before (batch). We keep doing this until we reach the desired size, such that we can cut out and yield a batch. We retain the rows in batch, which we did not yield. Because it may be the case that a single instance exceeds the desired batch_size, we use a while loop.
You could modify this minimal CustomDataloader to add more features in the style of PyTorch's dataloader. There is also no need to use a RandomSampler to draw in indices, others would work equally well. It would also be possible to avoid repeated concats, in case your data is large by using for example a list and keeping track of the cumulative length of its tensors.
Here is an example, that demonstrates it works:
patch_size = 5
channels = 3
dim0sizes = torch.LongTensor(100).random_(1, 100)
data = torch.randn(size=(dim0sizes.sum(), channels, patch_size, patch_size))
tensors = torch.split(data, list(dim0sizes))
ds = ToyDataset(tensors)
dl = CustomLoader(ds, my_bsz=250, drop_last=False)
for i in dl:
print(i.size(0))
(Related, but not exactly in topic)
For batch size adaptation you can use the code as exemplified in this repo. It is implemented for a different purpose (maximize GPU memory usage), but it is not too hard to translate to your problem.
The code does batch adaptation and batch spoofing.
To improve the previous answer, I found a repo that uses DataManger to achieve different patch sizes and batch sizes. It is basically initiating different dataloaders with different settings and a set_epoch function is used to set the appropriate dataloader for a given epoch.
I want to add word dropout to my network so that I can have sufficient training examples for training the embedding of the "unk" token. As far as I'm aware, this is standard practice. Let's assume the index of the unk token is 0, and the index for padding is 1 (we can switch them if that's more convenient).
This is a simple CNN network which implements word dropout the way I would have expected it to work:
class Classifier(nn.Module):
def __init__(self, params):
super(Classifier, self).__init__()
self.params = params
self.word_dropout = nn.Dropout(params["word_dropout"])
self.pad = torch.nn.ConstantPad1d(max(params["window_sizes"])-1, 1)
self.embedding = nn.Embedding(params["vocab_size"], params["word_dim"], padding_idx=1)
self.convs = nn.ModuleList([nn.Conv1d(1, params["feature_num"], params["word_dim"] * window_size, stride=params["word_dim"], bias=False) for window_size in params["window_sizes"]])
self.dropout = nn.Dropout(params["dropout"])
self.fc = nn.Linear(params["feature_num"] * len(params["window_sizes"]), params["num_classes"])
def forward(self, x, l):
x = self.word_dropout(x)
x = self.pad(x)
embedded_x = self.embedding(x)
embedded_x = embedded_x.view(-1, 1, x.size()[1] * self.params["word_dim"]) # [batch_size, 1, seq_len * word_dim]
features = [F.relu(conv(embedded_x)) for conv in self.convs]
pooled = [F.max_pool1d(feat, feat.size()[2]).view(-1, params["feature_num"]) for feat in features]
pooled = torch.cat(pooled, 1)
pooled = self.dropout(pooled)
logit = self.fc(pooled)
return logit
Don't mind the padding - pytorch doesn't have an easy way of using non zero padding in CNNs, much less trainable non-zero padding, so I'm doing it manually. Dropout also doesn't allow me to use non zero dropout, and I want to separate the padding token from the unk token. I'm keeping it in my example because it's the reason for this question's existence.
This doesn't work because dropout wants Float Tensors so that it can scale them properly, while my input is Long Tensors that don't need to be scaled.
Is there an easy way of doing this in pytorch? I essentially want to use LongTensor-friendly dropout (bonus: better if it will let me specify a dropout constant that isn't 0, so that I could use zero padding).
Actually I would do it outside of your model, before converting your input into a LongTensor.
This would look like this:
import random
def add_unk(input_token_id, p):
#random.random() gives you a value between 0 and 1
#to avoid switching your padding to 0 we add 'input_token_id > 1'
if random.random() < p and input_token_id > 1:
return 0
else:
return input_token_id
#than you have your input token_id
#for this example I take just a random number, lets say 127
input_token_id = 127
#let p be your probability for UNK
p = 0.01
your_input_tensor = torch.LongTensor([add_unk(input_token_id, p)])
Edit:
So there are two options which come to my mind which are actually GPU-friendly. In general both solutions should be much more efficient.
Option one - Doing computation directly in forward():
If you're not using torch.utils and don't have plans using it later this is probably the way to go.
Instead of doing the computation before we just do it in the forward() method of main PyTorch class. However I see no (simple) way doing this in torch 0.3.1., so you would need to upgrade to version 0.4.0:
So imagine x is your input vector:
>>> x = torch.tensor(range(10))
>>> x
tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
probs is a vector containing uniform probabilities for dropout so we can check later agains our probability for dropout:
>>> probs = torch.empty(10).uniform_(0, 1)
>>> probs
tensor([ 0.9793, 0.1742, 0.0904, 0.8735, 0.4774, 0.2329, 0.0074,
0.5398, 0.4681, 0.5314])
Now we apply the dropout probabilities probs on our input x:
>>> torch.where(probs > 0.2, x, torch.zeros(10, dtype=torch.int64))
tensor([ 0, 0, 0, 3, 4, 5, 0, 7, 8, 9])
Note: To see some effect I chose a dropout probability of 0.2 here. I reality you probably want it to be smaller.
You can pick for this any token / id you like, here is an example with 42 as unknown token id:
>>> unk_token = 42
>>> torch.where(probs > 0.2, x, torch.empty(10, dtype=torch.int64).fill_(unk_token))
tensor([ 0, 42, 42, 3, 4, 5, 42, 7, 8, 9])
torch.where comes with PyTorch 0.4.0:
https://pytorch.org/docs/master/torch.html#torch.where
I don't know about the shapes of your network, but your forward() should look something like this then (when using mini-batching you need to flatten the input before applying dropout):
def forward_train(self, x, l):
# probabilities
probs = torch.empty(x.size(0)).uniform_(0, 1)
# applying word dropout
x = torch.where(probs > 0.02, x, torch.zeros(x.size(0), dtype=torch.int64))
# continue like before ...
x = self.pad(x)
embedded_x = self.embedding(x)
embedded_x = embedded_x.view(-1, 1, x.size()[1] * self.params["word_dim"]) # [batch_size, 1, seq_len * word_dim]
features = [F.relu(conv(embedded_x)) for conv in self.convs]
pooled = [F.max_pool1d(feat, feat.size()[2]).view(-1, params["feature_num"]) for feat in features]
pooled = torch.cat(pooled, 1)
pooled = self.dropout(pooled)
logit = self.fc(pooled)
return logit
Note: I named the function forward_train() so you should use another forward() without dropout for evaluation / predicting. But you could also use some if conditions with train().
Option two: using torch.utils.data.Dataset:
If you're using Dataset provided by torch.utils it is very easy to do this kind of pre-processing efficiently. Dataset uses strong multi-processing acceleration by default so the the code sample above just has to be executed in the __getitem__ method of your Dataset class.
This could look like this:
def __getitem__(self, index):
'Generates one sample of data'
# Select sample
ID = self.input_tokens[index]
# Load data and get label
# using add ink_unk function from code above
X = torch.LongTensor(add_unk(ID, p=0.01))
y = self.targets[index]
return X, y
This is a bit out of context and doesn't look very elegant but I think you get the idea. According to this blog post of Shervine Amidi at Stanford it should be no problem to do more complex pre-processing steps in this function:
Since our code [Dataset is meant] is designed to be multicore-friendly, note that you
can do more complex operations instead (e.g. computations from source
files) without worrying that data generation becomes a bottleneck in
the training process.
The linked blog post - "A detailed example of how to generate your data in parallel with PyTorch" - provides also a good guide for implementing the data generation with Dataset and DataLoader.
I guess you'll prefer option one - only two lines and it should be very efficient. :)
Good luck!
i am loading the cifar-10 data set , the methods adds the data to tensor array , so to access the data i used .eval() with session , on a normal tf constant it return the value , but on the labels and the train set which are tf array it wont
1- i am using docker tensorflow-jupyter
2- it uses python 3
3- the batch file must be added to data folder
i am using the first batch [data_batch_1.bin]from this file
http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz
As notebook:
https://drive.google.com/open?id=0B_AFMME1kY1obkk1YmJHcjV0ODA
The code[As in tensorflow site but modified to read 1 patch] [check the last 7 lines for the data loading] :
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import urllib
import tensorflow as tf
from six.moves import xrange # pylint: disable=redefined-builtin
# Global constants describing the CIFAR-10 data set.
NUM_CLASSES = 10
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 5000
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 1000
IMAGE_SIZE = 32
def _generate_image_and_label_batch(image, label, min_queue_examples,
batch_size, shuffle):
"""Construct a queued batch of images and labels.
Args:
image: 3-D Tensor of [height, width, 3] of type.float32.
label: 1-D Tensor of type.int32
min_queue_examples: int32, minimum number of samples to retain
in the queue that provides of batches of examples.
batch_size: Number of images per batch.
shuffle: boolean indicating whether to use a shuffling queue.
Returns:
images: Images. 4D tensor of [batch_size, height, width, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
# Create a queue that shuffles the examples, and then
# read 'batch_size' images + labels from the example queue.
num_preprocess_threads = 2
if shuffle:
images, label_batch = tf.train.shuffle_batch(
[image, label],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * batch_size,
min_after_dequeue=min_queue_examples)
else:
images, label_batch = tf.train.batch(
[image, label],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * batch_size)
# Display the training images in the visualizer.
tf.image_summary('images', images)
return images, tf.reshape(label_batch, [batch_size])
def read_cifar10(filename_queue):
"""Reads and parses examples from CIFAR10 data files.
Recommendation: if you want N-way read parallelism, call this function
N times. This will give you N independent Readers reading different
files & positions within those files, which will give better mixing of
examples.
Args:
filename_queue: A queue of strings with the filenames to read from.
Returns:
An object representing a single example, with the following fields:
height: number of rows in the result (32)
width: number of columns in the result (32)
depth: number of color channels in the result (3)
key: a scalar string Tensor describing the filename & record number
for this example.
label: an int32 Tensor with the label in the range 0..9.
uint8image: a [height, width, depth] uint8 Tensor with the image data
"""
class CIFAR10Record(object):
pass
result = CIFAR10Record()
# Dimensions of the images in the CIFAR-10 dataset.
# See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
# input format.
label_bytes = 1 # 2 for CIFAR-100
result.height = 32
result.width = 32
result.depth = 3
image_bytes = result.height * result.width * result.depth
# Every record consists of a label followed by the image, with a
# fixed number of bytes for each.
record_bytes = label_bytes + image_bytes
# Read a record, getting filenames from the filename_queue. No
# header or footer in the CIFAR-10 format, so we leave header_bytes
# and footer_bytes at their default of 0.
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
result.key, value = reader.read(filename_queue)
# Convert from a string to a vector of uint8 that is record_bytes long.
record_bytes = tf.decode_raw(value, tf.uint8)
# The first bytes represent the label, which we convert from uint8->int32.
result.label = tf.cast(
tf.slice(record_bytes, [0], [label_bytes]), tf.int32)
# The remaining bytes after the label represent the image, which we reshape
# from [depth * height * width] to [depth, height, width].
depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
[result.depth, result.height, result.width])
# Convert from [depth, height, width] to [height, width, depth].
result.uint8image = tf.transpose(depth_major, [1, 2, 0])
return result
def inputs(eval_data, data_dir, batch_size):
"""Construct input for CIFAR evaluation using the Reader ops.
Args:
eval_data: bool, indicating if one should use the train or eval data set.
data_dir: Path to the CIFAR-10 data directory.
batch_size: Number of images per batch.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
filenames=[];
filenames.append(os.path.join(data_dir, 'data_batch_1.bin') )
num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
print(filenames)
# Create a queue that produces the filenames to read.
filename_queue = tf.train.string_input_producer(filenames)
# Read examples from files in the filename queue.
read_input = read_cifar10(filename_queue)
reshaped_image = tf.cast(read_input.uint8image, tf.float32)
height = IMAGE_SIZE
width = IMAGE_SIZE
# Image processing for evaluation.
# Crop the central [height, width] of the image.
resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
width, height)
# Subtract off the mean and divide by the variance of the pixels.
float_image = tf.image.per_image_whitening(resized_image)
# Ensure that the random shuffling has good mixing properties.
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(num_examples_per_epoch *
min_fraction_of_examples_in_queue)
# Generate a batch of images and labels by building up a queue of examples.
return _generate_image_and_label_batch(float_image, read_input.label,
min_queue_examples, batch_size,
shuffle=False)
sess = tf.InteractiveSession()
train_data,train_labels = inputs(False,"data",6000)
print (train_data,train_labels)
train_data=train_data.eval()
train_labels=train_labels.eval()
print(train_data)
print(train_labels)
sess.close()
You must call tf.train.start_queue_runners(sess) before you call train_data.eval() or train_labels.eval().
This is a(n unfortunate) consequence of how TensorFlow input pipelines are implemented: the tf.train.string_input_producer(), tf.train.shuffle_batch(), and tf.train.batch() functions internally create queues that buffer records between different stages in the input pipeline. The tf.train.start_queue_runners() call tells TensorFlow to start fetching records into these buffers; without calling it the buffers remain empty and eval() hangs indefinitely.