CPLEX execute block is not being run from VBA - excel

I have a model written in OPL, that is called from VBA.
Afterwards an execute block is made, but when the call from VBA is made, the execute block does not run.
// Create Parameters:
{string} G1 = ...; // Set of teams in first group
{string} G2 = ...; // Set of teams in second group
{string} G3 = ...; // Set of teams in third group
{string} G4 = ...; // Set of teams in fourth group
{string} Teams = G1 union G2 union G3 union G4;
tuple Match {string team1; string team2;}
{Match} Matches_G1 = {<t1,t2>| ordered t1,t2 in G1};
{Match} Matches_G2 = {<t1,t2>| ordered t1,t2 in G2};
{Match} Matches_G3 = {<t1,t2>| ordered t1,t2 in G3};
{Match} Matches_G4 = {<t1,t2>| ordered t1,t2 in G4};
{Match} MD2 = ...;
{Match} MD6 = ...;
{Match} MD10 = ...;
{Match} MD4 = ...;
{Match} MD8 = ...;
{Match} MD12 = ...;
{Match} M_G12 = Matches_G1 union Matches_G2; //All matches for the first two groups
{Match} M_G34 = Matches_G3 union Matches_G4; //All matches for the second two groups
{Match} M = M_G12 union M_G34;
{Match} matchForTeam[t in Teams] = {m| m in M : m.team1 == t || m.team2 == t}; //List of all teams
{string} S =...; //Set of stadiums
{string} T = ...; //Set of kick off times
{string} D = ...; //Set of kick off days
int K[D][S][T] = ...; //Predetermined schedule between stadium and kickoff time
float VT[M][T] = ...; //Value of match M is played at Time T according to TV distribution
float VH[M][S] = ...; //Value of match M is played at stadium S according to Hospitality
int V[M] = ...;
int Treshold = ...;
//float W = 4;
//float Q = 1000;
// Decision Variables:
dvar int X[M][S][T] in 0..1; // if match M is played at stadium S at time T
dvar int Dist; //Object function for distribution
dvar int Hosp; //Object function for Hopsitality
dvar int Village[M][S] in 0..1; //If village build at stadium S
//////////// OBJECTIVE FUNCTION ///////////////
maximize
1000*Dist+0.1*Hosp;
//////////// CONSTRAINTS ///////////////
subject to{
Dist == sum(m in M, s in S, t in T) VT[m][t]*X[m][s][t];
Hosp == sum(m in M, s in S, t in T) VH[m][s]*X[m][s][t];
Block of code...
}
execute {
var cd = new IloOplOutputFile("resbi2.txt");
for(var m in M)
for(var s in S)
for(var t in T)
cd.writeln(thisOplModel.X[m][s][t]);
cd.close();
writeln("schedule: ", X);
}
If I run it directly in CPLEX then it is not a problem, the file is created. But this is not happening when the call from VBA is made. Any ideas how to solve this? Thanks in advance.

can you change
var cd = new IloOplOutputFile("resbi2.txt");
into an absolute path like
var cd = new IloOplOutputFile("c:\\resbi2.txt");
?

Related

Ocaml - Check, given a list of transitions, the word is recognized

I created a function that returns a list of transitions. Transitions are of type int * char * int.
for example (0 'E' 1); (1 'A' 2). The valid alphabet for the transitions are A, C, G and T and the char 'E' represents epsilon.
type transition = int * char * int;;
let get_start (a,_,_) = a;;
let get_char (_,a,_) = a;;
let get_end (_,_,a) = a;;
The initial state and the final state are stored in the following variables.
...
let i_strt = ref !state_initial;;
let i_end = ref !state_end;;
exception Out_of_loop;;
let seq = read_line();;(* string to be tested *)
let len_seq = String.length seq -1;;
let lst_trs_length = List.length !aux_transitions -1;; (* aux_transitions -> all transitions*)
let i = ref 0;;
let f = ref 0;;
while !i <= len_seq do
let c_r = seq.[i]in (* c_r = 'A' seq = ACGT*)
try
while !j <= lst_trs_length do
let aux_trs = List.nth !aux_transitions !j in (* 0 'E' 1 -> 1 'A' 2 ....*)
if (get_start aux_trs) = !i_strt then (* *)
let aux_chr = get_char aux_trs in (* 'A' *)
if aux_chr = c_r then(
i_strt := get_end aux_trs; (* i_strt = 1*)
raise Out_of_loop
)
else if aux_chr = 'E' then(
i_strt := get_end aux_trs;
j := -1
);
j := !j+1
done;
with Out_of_loop ->();
i := !i +1
done;
I am trying to use these two cycles to check whether the string "seq" can be recognized or not by the list of transitions taking into account the initial state. I am having trouble writing this function ... I want a function that, given a list of transitions and a string, returns 'true' in case it is recognized or false in the negative case.

Convert 3 output to one input at NODE-RED

Question is about Node-RED for raspberry pi 3. I have 3 input that give acceleration of X,Y,Z axis. I want to make one output from these 3 inputs. For this , I use √X^2+Y^2+Z^2 formula. According to my function my output is still 3 piece and giving NaN output when i debug. What should i do in Acc to Freq function
Here is my collecting X,Y,Z info from my sql.
var str = msg.payload;
str = str[0]['IX']; // Choose last data from IX column
a = str * 10; // Scaling the value
msg.payload = a
return msg;
var str = msg.payload;
str = str[0]['IY']; // Choose last data from IY column
b = str * 10; // Scaling the value
msg.payload = b
return msg;
var str = msg.payload;
str = str[0]['IZ']; // Choose last data from IZ column
c = str * 10; // Scaling the value
msg.payload = c
return msg;
And the function that i m try to calculate one output ( Acc to Freq )
var str = msg.payload;
var a;
var b;
var c;
str = Math.pow(a^2+b^2+c^2);
d = str * 10;
msg.payload = d;
return msg;
The point to remember is that a function node runs every time a message arrives, if you send it 3 separate messages then it will run 3 times. Also each function node is totally independent of all others, you can't declare a variable in one and use it in another (well there is something called the Context, but that's not particularly useful here)
You've not actually shown your flow so we are going to have to guess a little here, but you imply that all the starting values are coming from a single SQL query that returns multiple columns. If this is the case then you have 2 options.
Just do all the calculations in one place e.g. one function node with the following:
var str = msg.payload;
var strA = str[0]['IX']; // Choose last data from IX column
var a = strA * 10; // Scaling the value
var strB = str[0]['IY']; // Choose last data from IY column
var b = strB * 10; // Scaling the value
var strC = str[0]['IZ']; // Choose last data from IZ column
var c = strC * 10; // Scaling the value
var strC = Math.pow(a^2+b^2+c^2);
var d = strC * 10;
msg.payload = d;
return msg;
You can run the output of your current 3 function nodes into a Join node set to collect 3 values. This will generate a new msg object with a payload containing an array of the 3 values. You can then modify your final function node as follows:
var a = msg.payload[0];
var b = msg.payload[1];
var c = msg.payload[2];
var d = Math.pow(a^2+b^2+c^2) * 10 ;
msg.payload = d;
return msg;

Algorithm for finding continuous repeated sequences

I'm looking for an algorithm that finds short tandem repeats in a genome sequence.
Basically, given a really long string which can only consist of the 4 characters 'ATCG', I need to find short repeats between 2-5 characters long that are next to each other.
ex:
TACATGAGATCATGATGATGATGATGGAGCTGTGAGATC
would give ATGATGATG or ATG repeated 3 times
The algorithm needs to scale up to a string of 1 million characters so I'm trying to get as close to linear runtime as possible.
My current algorithm:
Since the repeats can be 2-5 characters long, I check the string character by character and see if the Nth character is the same as the N+Xth character, with X being 2 through 5. With a counter for each X that counts sequential matches and resets at a mismatch, we know if there is a repeat when X = the counter. The subsequent repeats can then be checked manually.
You are looking at each character which gives you O(n), since you compare on each character the next (maximum) five characters this gives you a constant c:
var data = get_input();
var compare = { `A`, `T`, `G`, `A`, `T` } // or whatever
var MAX_LOOKAHEAD = compare.length
var n
var c
for(n = data_array.length; n < size; i++) { // Has runtime O(n)
for(c = 0; c < MAX_LOOKAHEAD; c++) { // Maximum O(c)
if( compare[c] != data[i+c] ) {
break;
} else {
report( "found match at position " + i )
}
}
}
It is easy to see that this runs O(n*c) times. Since c is very small it can be ignored - and I think one can not get rid of that constant - which results in a total runtime of O(n).
The good news:
You can speed this up with parallelization. E.g. you could split this up in k intervals and let multiple threads do the job for you by giving them appropriate start and end indices. This could give you a linear speedup.
If you do that make sure that you treat the intersections as special cases since you could miss a match if your intervals split a match in two.
E.g. n = 50000:
Partition for 4 threads: (n/10000) - 1 = 4. The 5th thread won't have a lot to do since it just handles the intersections which is why we don't need to consider its (in our case tiny) overhead.
1 10000 20000 40000 50000
|-------------------|-------------------|-------------------|-------------------|
| <- thread 1 -> | <- thread 2 -> | <- thread 3 -> | <- thread 4 -> |
|---| |---| |---|
|___________________|___________________|
|
thread 5
And this is how it could look like:
var data;
var compare = { `A`, `T`, `G`, `A`, `T` };
var MAX_LOOKAHEAD = compare.length;
thread_function(args[]) {
var from = args[0];
var to = args[1];
for(n = from ; n < to ; i++) {
for(c = 0; c < MAX_LOOKAHEAD; c++) {
if( compare[c] != data[i+c] ) {
break;
} else {
report( "found match at position " + i )
}
}
}
}
main() {
var data_size = 50000;
var thread_count = 4;
var interval_size = data_size / ( thread_count + 1) ;
var tid[]
// This loop starts the threads for us:
for( var i = 0; i < thread_count; i++ ) {
var args = { interval_size * i, (interval_size * i) + interval_size };
tid.add( create_thread( thread_function, args ) );
}
// And this handles the intersections:
for( var i = 1; i < thread_count - 1; i++ ) {
var args = { interval_size * i, (interval_size * i) + interval_size };
from = (interval_size * i) - compare.length + 1;
to = (interval_size * i) + compare.length - 1;
for(j = from; j < to ; j++) {
for(k = 0; k < MAX_LOOKAHEAD; k++) {
if( compare[k] != data[j+k] ) {
break;
} else {
report( "found match at position " + j )
}
}
}
}
wait_for_multiple_threads( tid );
}

Extracting vertices from scenekit

I'm having a problem with understanding scenekit geometery.
I have the default cube from Blender, and I export as collada (DAE), and can bring it into scenekit.... all good.
Now I want to see the vertices for the cube. In the DAE I can see the following for the "Cube-mesh-positions-array",
"1 1 -1 1 -1 -1 -1 -0.9999998 -1 -0.9999997 1 -1 1 0.9999995 1 0.9999994 -1.000001 1 -1 -0.9999997 1 -1 1 1"
Now what I'd like to do in scenekit, is get the vertices back, using something like the following:
SCNGeometrySource *vertexBuffer = [[cubeNode.geometry geometrySourcesForSemantic:SCNGeometrySourceSemanticVertex] objectAtIndex:0];
If I process the vertexBuffer (I've tried numerous methods of looking at the data), it doesn't seem correct.
Can somebody explain what "SCNGeometrySourceSemanticVertex" is giving me, and how to extract the vertex data properly? What I'd like to see is:
X = "float"
Y = "float"
Z = "float"
Also I was investigating the following class / methods, which looked promising (some good data values here), but the data from gmpe appears empty, is anybody able to explain what the data property of "SCNGeometryElement" contains?
SCNGeometryElement *gmpe = [theCurrentNode.geometry geometryElementAtIndex:0];
Thanks, assistance much appreciated,
D
The geometry source
When you call geometrySourcesForSemantic: you are given back an array of SCNGeometrySource objects with the given semantic in your case the sources for the vertex data).
This data could have been encoded in many different ways and a multiple sources can use the same data with a different stride and offset. The source itself has a bunch of properties for you to be able to decode the data like for example
dataStride
dataOffset
vectorCount
componentsPerVector
bytesPerComponent
You can use combinations of these to figure out which parts of the data to read and make vertices out of them.
Decoding
The stride tells you how many bytes you should step to get to the next vector and the offset tells you how many bytes offset from the start of that vector you should offset before getting to the relevant pars of the data for that vector. The number of bytes you should read for each vector is componentsPerVector * bytesPerComponent
Code to read out all the vertices for a single geometry source would look something like this
// Get the vertex sources
NSArray *vertexSources = [geometry geometrySourcesForSemantic:SCNGeometrySourceSemanticVertex];
// Get the first source
SCNGeometrySource *vertexSource = vertexSources[0]; // TODO: Parse all the sources
NSInteger stride = vertexSource.dataStride; // in bytes
NSInteger offset = vertexSource.dataOffset; // in bytes
NSInteger componentsPerVector = vertexSource.componentsPerVector;
NSInteger bytesPerVector = componentsPerVector * vertexSource.bytesPerComponent;
NSInteger vectorCount = vertexSource.vectorCount;
SCNVector3 vertices[vectorCount]; // A new array for vertices
// for each vector, read the bytes
for (NSInteger i=0; i<vectorCount; i++) {
// Assuming that bytes per component is 4 (a float)
// If it was 8 then it would be a double (aka CGFloat)
float vectorData[componentsPerVector];
// The range of bytes for this vector
NSRange byteRange = NSMakeRange(i*stride + offset, // Start at current stride + offset
bytesPerVector); // and read the lenght of one vector
// Read into the vector data buffer
[vertexSource.data getBytes:&vectorData range:byteRange];
// At this point you can read the data from the float array
float x = vectorData[0];
float y = vectorData[1];
float z = vectorData[2];
// ... Maybe even save it as an SCNVector3 for later use ...
vertices[i] = SCNVector3Make(x, y, z);
// ... or just log it
NSLog(#"x:%f, y:%f, z:%f", x, y, z);
}
The geometry element
This will give you all the vertices but won't tell you how they are used to construct the geometry. For that you need the geometry element that manages the indices for the vertices.
You can get the number of geometry elements for a piece of geometry from the geometryElementCount property. Then you can get the different elements using geometryElementAtIndex:.
The element can tell you if the vertices are used a individual triangles or a triangle strip. It also tells you the bytes per index (the indices may have been ints or shorts which will be necessary to decode its data.
Here is an extension method if the data isn't contiguous (the vector size isn't equal to the stride) which can be the case when the geometry is loaded from a DAE file. It also doesn't use copyByte function.
extension SCNGeometry{
/**
Get the vertices (3d points coordinates) of the geometry.
- returns: An array of SCNVector3 containing the vertices of the geometry.
*/
func vertices() -> [SCNVector3]? {
let sources = self.sources(for: .vertex)
guard let source = sources.first else{return nil}
let stride = source.dataStride / source.bytesPerComponent
let offset = source.dataOffset / source.bytesPerComponent
let vectorCount = source.vectorCount
return source.data.withUnsafeBytes { (buffer : UnsafePointer<Float>) -> [SCNVector3] in
var result = Array<SCNVector3>()
for i in 0...vectorCount - 1 {
let start = i * stride + offset
let x = buffer[start]
let y = buffer[start + 1]
let z = buffer[start + 2]
result.append(SCNVector3(x, y, z))
}
return result
}
}
}
The Swift Version
The Objective-C version and this are essentially identical.
let planeSources = _planeNode?.geometry?.geometrySourcesForSemantic(SCNGeometrySourceSemanticVertex)
if let planeSource = planeSources?.first {
let stride = planeSource.dataStride
let offset = planeSource.dataOffset
let componentsPerVector = planeSource.componentsPerVector
let bytesPerVector = componentsPerVector * planeSource.bytesPerComponent
let vectors = [SCNVector3](count: planeSource.vectorCount, repeatedValue: SCNVector3Zero)
let vertices = vectors.enumerate().map({
(index: Int, element: SCNVector3) -> SCNVector3 in
var vectorData = [Float](count: componentsPerVector, repeatedValue: 0)
let byteRange = NSMakeRange(index * stride + offset, bytesPerVector)
planeSource.data.getBytes(&vectorData, range: byteRange)
return SCNVector3Make(vectorData[0], vectorData[1], vectorData[2])
})
// You have your vertices, now what?
}
Here's a Swift 5.3 version, based on the other answers, and that also supports a bytesPerComponent different from 4 (untested for size different from 4 though):
extension SCNGeometrySource {
var vertices: [SCNVector3] {
let stride = self.dataStride
let offset = self.dataOffset
let componentsPerVector = self.componentsPerVector
let bytesPerVector = componentsPerVector * self.bytesPerComponent
func vectorFromData<FloatingPoint: BinaryFloatingPoint>(_ float: FloatingPoint.Type, index: Int) -> SCNVector3 {
assert(bytesPerComponent == MemoryLayout<FloatingPoint>.size)
let vectorData = UnsafeMutablePointer<FloatingPoint>.allocate(capacity: componentsPerVector)
defer {
vectorData.deallocate()
}
let buffer = UnsafeMutableBufferPointer(start: vectorData, count: componentsPerVector)
let rangeStart = index * stride + offset
self.data.copyBytes(to: buffer, from: rangeStart..<(rangeStart + bytesPerVector))
return SCNVector3(
CGFloat.NativeType(vectorData[0]),
CGFloat.NativeType(vectorData[1]),
CGFloat.NativeType(vectorData[2])
)
}
let vectors = [SCNVector3](repeating: SCNVector3Zero, count: self.vectorCount)
return vectors.indices.map { index -> SCNVector3 in
switch bytesPerComponent {
case 4:
return vectorFromData(Float32.self, index: index)
case 8:
return vectorFromData(Float64.self, index: index)
case 16:
return vectorFromData(Float80.self, index: index)
default:
return SCNVector3Zero
}
}
}
}
// call this function _ = vertices(node: mySceneView.scene!.rootNode)
// I have get the volume in Swift 4.2 :--- this function
func vertices(node:SCNNode) -> [SCNVector3] {
let planeSources1 = node.childNodes.first?.geometry
let planeSources = planeSources1?.sources(for: SCNGeometrySource.Semantic.vertex)
if let planeSource = planeSources?.first {
let stride = planeSource.dataStride
let offset = planeSource.dataOffset
let componentsPerVector = planeSource.componentsPerVector
let bytesPerVector = componentsPerVector * planeSource.bytesPerComponent
let vectors = [SCNVector3](repeating: SCNVector3Zero, count: planeSource.vectorCount)
let vertices = vectors.enumerated().map({
(index: Int, element: SCNVector3) -> SCNVector3 in
let vectorData = UnsafeMutablePointer<Float>.allocate(capacity: componentsPerVector)
let nsByteRange = NSMakeRange(index * stride + offset, bytesPerVector)
let byteRange = Range(nsByteRange)
let buffer = UnsafeMutableBufferPointer(start: vectorData, count: componentsPerVector)
planeSource.data.copyBytes(to: buffer, from: byteRange)
return SCNVector3Make(buffer[0], buffer[1], buffer[2])
})
var totalVolume = Float()
var x1 = Float(),x2 = Float(),x3 = Float(),y1 = Float(),y2 = Float(),y3 = Float(),z1 = Float(),z2 = Float(),z3 = Float()
var i = 0
while i < vertices.count{
x1 = vertices[i].x;
y1 = vertices[i].y;
z1 = vertices[i].z;
x2 = vertices[i + 1].x;
y2 = vertices[i + 1].y;
z2 = vertices[i + 1].z;
x3 = vertices[i + 2].x;
y3 = vertices[i + 2].y;
z3 = vertices[i + 2].z;
totalVolume +=
(-x3 * y2 * z1 +
x2 * y3 * z1 +
x3 * y1 * z2 -
x1 * y3 * z2 -
x2 * y1 * z3 +
x1 * y2 * z3);
i = i + 3
}
totalVolume = totalVolume / 6;
volume = "\(totalVolume)"
print("Volume Volume Volume Volume Volume Volume Volume :\(totalVolume)")
lbl_valume.text = "\(clean(String(totalVolume))) cubic mm"
}
return[]
}
With swift 3.1 you can extract vertices from SCNGeometry in a much faster and shorter way:
func vertices(node:SCNNode) -> [SCNVector3] {
let vertexSources = node.geometry?.getGeometrySources(for: SCNGeometrySource.Semantic.vertex)
if let vertexSource = vertexSources?.first {
let count = vertexSource.data.count / MemoryLayout<SCNVector3>.size
return vertexSource.data.withUnsafeBytes {
[SCNVector3](UnsafeBufferPointer<SCNVector3>(start: $0, count: count))
}
}
return []
}
...
Today i've noted that on osx this not going to work correct. This happens because on iOS SCNVector3 build with Float and on osx CGFloat (only apple good do smth simple so suffering). So I had to tweak the code for osx but this not gonna work as fast as on iOS.
func vertices() -> [SCNVector3] {
let vertexSources = sources(for: SCNGeometrySource.Semantic.vertex)
if let vertexSource = vertexSources.first {
let count = vertexSource.vectorCount * 3
let values = vertexSource.data.withUnsafeBytes {
[Float](UnsafeBufferPointer<Float>(start: $0, count: count))
}
var vectors = [SCNVector3]()
for i in 0..<vertexSource.vectorCount {
let offset = i * 3
vectors.append(SCNVector3Make(
CGFloat(values[offset]),
CGFloat(values[offset + 1]),
CGFloat(values[offset + 2])
))
}
return vectors
}
return []
}
For someone like me want to extract data of face from SCNGeometryElement.
Notice I only consider primtive type is triangle and index size is 2 or 4.
void extractInfoFromGeoElement(NSString* scenePath){
NSURL *url = [NSURL fileURLWithPath:scenePath];
SCNScene *scene = [SCNScene sceneWithURL:url options:nil error:nil];
SCNGeometry *geo = scene.rootNode.childNodes.firstObject.geometry;
SCNGeometryElement *elem = geo.geometryElements.firstObject;
NSInteger componentOfPrimitive = (elem.primitiveType == SCNGeometryPrimitiveTypeTriangles) ? 3 : 0;
if (!componentOfPrimitive) {//TODO: Code deals with triangle primitive only
return;
}
for (int i=0; i<elem.primitiveCount; i++) {
void *idxsPtr = NULL;
int stride = 3*i;
if (elem.bytesPerIndex == 2) {
short *idxsShort = malloc(sizeof(short)*3);
idxsPtr = idxsShort;
}else if (elem.bytesPerIndex == 4){
int *idxsInt = malloc(sizeof(int)*3);
idxsPtr = idxsInt;
}else{
NSLog(#"unknow index type");
return;
}
[elem.data getBytes:idxsPtr range:NSMakeRange(stride*elem.bytesPerIndex, elem.bytesPerIndex*3)];
if (elem.bytesPerIndex == 2) {
NSLog(#"triangle %d : %d, %d, %d\n",i,*(short*)idxsPtr,*((short*)idxsPtr+1),*((short*)idxsPtr+2));
}else{
NSLog(#"triangle %d : %d, %d, %d\n",i,*(int*)idxsPtr,*((int*)idxsPtr+1),*((int*)idxsPtr+2));
}
//Free
free(idxsPtr);
}
}
The Swift 3 version:
// `plane` is some kind of `SCNGeometry`
let planeSources = plane.geometry.sources(for: SCNGeometrySource.Semantic.vertex)
if let planeSource = planeSources.first {
let stride = planeSource.dataStride
let offset = planeSource.dataOffset
let componentsPerVector = planeSource.componentsPerVector
let bytesPerVector = componentsPerVector * planeSource.bytesPerComponent
let vectors = [SCNVector3](repeating: SCNVector3Zero, count: planeSource.vectorCount)
let vertices = vectors.enumerated().map({
(index: Int, element: SCNVector3) -> SCNVector3 in
let vectorData = UnsafeMutablePointer<Float>.allocate(capacity: componentsPerVector)
let nsByteRange = NSMakeRange(index * stride + offset, bytesPerVector)
let byteRange = Range(nsByteRange)
let buffer = UnsafeMutableBufferPointer(start: vectorData, count: componentsPerVector)
planeSource.data.copyBytes(to: buffer, from: byteRange)
let vector = SCNVector3Make(buffer[0], buffer[1], buffer[2])
})
// Use `vertices` here: vertices[0].x, vertices[0].y, vertices[0].z
}
OK, here is another Swift 5.5 version based on Oliver's answer.
extension SCNGeometry{
/**
Get the vertices (3d points coordinates) of the geometry.
- returns: An array of SCNVector3 containing the vertices of the geometry.
*/
func vertices() -> [SCNVector3]? {
let sources = self.sources(for: .vertex)
guard let source = sources.first else{return nil}
let stride = source.dataStride / source.bytesPerComponent
let offset = source.dataOffset / source.bytesPerComponent
let vectorCount = source.vectorCount
return source.data.withUnsafeBytes { dataBytes in
let buffer: UnsafePointer<Float> = dataBytes.baseAddress!.assumingMemoryBound(to: Float.self)
var result = Array<SCNVector3>()
for i in 0...vectorCount - 1 {
let start = i * stride + offset
let x = buffer[start]
let y = buffer[start + 1]
let z = buffer[start + 2]
result.append(SCNVector3(x, y, z))
}
return result
}
}
}
To use it you simply create a standard shape from which you can extract the vertex and rebuild the index.
let g = SCNSphere(radius: 1)
let newNode = SCNNode(geometry: g)
let vectors = newNode.geometry?.vertices()
var indices:[Int32] = []
for i in stride(from: 0, to: vectors!.count, by: 1) {
indices.append(Int32(i))
indices.append(Int32(i+1))
}
return self.createGeometry(
vertices:vectors!, indices: indices,
primitiveType: SCNGeometryPrimitiveType.line)
The createGeometry extension can be found here
It draws this...

c# : selecting a variable from several, randomly

I have several independant int variables in my program. Is there a way I can feed randomly the value of one of them into a new int variable or an int array ? Thanks in Advance.
EDIT:
here's a pseudocode to demonstrate:
int A1 = 1;
int A2 = 3;
int RESULT = 0;
Random rand = new Random();
Result = rand.Next(0, A1 || A2)]; //Result holds the value/variable name of A1 or A2
You could put all the ints you want to choose from in a new array and then select a random value from it. For example:
int value1 = 3;
int anotherValue = 5;
int value2 = 1;
int[] selectableInts = new int[3] { value1, anotherValue, value2 };
Random rand = new Random();
int randomValue = selectableInts[rand.Next(0, selectableInts.Length)];
How about this:
// create an array of your variables
int[] A = new int[] {1,3};
// Instantiate Random object.
Random rand = new Random();
// Get a value between 0 and the lenght of your array.
// This is equivalent to select one of the elements of the array.
int index = rand.Next(0,A.Length);
// Get the value from the array that was selected at random.
int Result = A[index];
I had some trouble myself and found this thread, but its code is for Ints only, so I was stuck for some time to make it work for other than ints.
I think #David gave me some idea how to make it work.
This is my version for using types other than ints.
Vector2 down = new Vector2(0, 1);
Vector2 left = new Vector2(-1, 0);
Vector2 right = new Vector2(1, 0);
List<Vector2> possibleDirections = new List<Vector2>()
{
down,
left,
right
};
Random random = new Random();
Vector2 selectedRandomDirection = possibleDirections[random.Next(0, possibleDirections.Count)];
// this is the result
Vector2 direction = selectedRandomDirection;

Resources