I am trying to read a Spark DataFrame from an 'excel' file. I used the crealytics dependency.
Without any predefined schema, all rows are correctly read but as only string type columns.
To prevent that, I am using my own schema (where I mentioned certain columns to be Integer type), but in this case, most of the rows are dropped when the file is being read.
The library dependency used in build.sbt:
"com.crealytics" %% "spark-excel" % "0.11.1",
Scala version - 2.11.8
Spark version - 2.3.2
val inputDF = sparkSession.read.excel(useHeader = true).load(inputLocation(0))
The above reads all the data - around 25000 rows.
But,
val inputWithSchemaDF: DataFrame = sparkSession.read
.format("com.crealytics.spark.excel")
.option("useHeader" , "false")
.option("inferSchema", "false")
.option("addColorColumns", "true")
.option("treatEmptyValuesAsNulls" , "false")
.option("keepUndefinedRows", "true")
.option("maxRowsInMey", 2000)
.schema(templateSchema)
.load(inputLocation)
This gives me only 450 rows.
Is there a way to prevent that? Thanks in advance! (edited)
As of now, I haven't found a fix to this problem, but I tried solving it in a different way by manually type-casting. To make it a bit better in terms of number of lines of code, I took the help of a for loop. My solutions is as follows:
Step 1: Create my own schema of type 'StructType':
val requiredSchema = new StructType()
.add("ID", IntegerType, true)
.add("Vendor", StringType, true)
.add("Brand", StringType, true)
.add("Product Name", StringType, true)
.add("Net Quantity", StringType, true)
Step 2: Type casting the Dataframe AFTER it has been read (WITHOUT the custom schema) from the excel file (instead of using the schema while reading the data):
def convertInputToDesiredSchema(inputDF: DataFrame, requiredSchema: StructType)(implicit sparkSession: SparkSession) : DataFrame =
{
var schemaDf: DataFrame = inputDF
for(i <- inputDF.columns.indices)
{
if(inputDF.schema(i).dataType.typeName != requiredSchema(i).dataType.typeName)
{
schemaDf = schemaDf.withColumn(schemaDf.columns(i), col(schemaDf.columns(i)).cast(requiredSchema.apply(i).dataType))
}
}
schemaDf
}
This might not be an efficient solution, but is better than typing out too many lines of code to typecast multiple columns.
I am still searching for a solution to my original question.
This solution is just in case someone might want to try and are in immediate need of a quick fix.
Here's a workaround, using PySpark, using a schema that consists of "fieldname" and "dataType":
# 1st load the dataframe with StringType for all columns
from pyspark.sql.types import *
input_df = spark.read.format("com.crealytics.spark.excel") \
.option("header", isHeaderOn) \
.option("treatEmptyValuesAsNulls", "true") \
.option("dataAddress", xlsxAddress1) \
.option("setErrorCellsToFallbackValues", "true") \
.option("ignoreLeadingWhiteSpace", "true") \
.option("ignoreTrailingWhiteSpace", "true") \
.load(inputfile)
# 2nd Modify the datatypes within the dataframe using a file containing column names and the expected data type.
dtypes = pd.read_csv("/dbfs/mnt/schema/{}".format(file_schema_location), header=None).to_records(index=False).tolist()
fields = [StructField(dtype[0], globals()[f'{dtype[1]}']()) for dtype in dtypes]
schema = StructType(fields)
for dt in dtypes:
colname =dt[0]
coltype = dt[1].replace("Type","")
input_df = input_df.withColumn(colname, col(colname).cast(coltype))
Related
I am trying to loop through many files in many folders in a datalake. I'm two ideas, as seen below.
// first attempt
import org.apache.spark.sql.functions.input_file_name
val myDFCsv = spark.read.format("csv")
.option("sep","|")
.option("inferSchema","true")
.option("header","false")
.load("mnt/rawdata/corp/CW*.gz")
.withColumn("file_name", input_file_name())
myDFCsv.count()
// second attempt
import org.apache.spark.sql.functions.input_file_name
val myDFCsv = spark.read
.option("sep", "|")
.option("inferSchema", "true")
.option("header", "false")
.csv("mnt/rawdata/corp/CW*.gz")
.withColumn("file_name", input_file_name())
myDFCsv.count()
In both cases, I'm getting this error.
myDFCsv:org.apache.spark.sql.DataFrame = [_c0: string, _c1: string ... 3 more fields]
import org.apache.spark.sql.functions.input_file_name
myDFCsv: org.apache.spark.sql.DataFrame = [_c0: string, _c1: string ... 3 more fields]
res11: Long = 97
This must be very close to working, but something seems to be off, and I can't tell what it is. Can someone point out the issue and let me know what's wrong here? Thanks so much.
Nothing is wrong here, this is not an error, the output is telling you that you:
have a dataframe called : myDFCsv with 5 fields
did an import of org.apache.spark.sql.functions.input_file_name
have a dataframe called myDFCsv with 5 fields
counted the number of lines in the dataframe and you got 97 as a result
You can start using the dataframe and seeing its content using the following command : myDFCsv.show(false)
you can also check the schema of your dataframe using the following operation :
myDFCsv.printSchema()
I hope it helps,
If I understand correctly, ArrayType can be added as Spark DataFrame columns. I am trying to add a multidimensional array to an existing Spark DataFrame by using the withColumn method. My idea is to have this array available with each DataFrame row in order to use it to send back information from the map function.
The error I get says that the withColumn function is looking for a Column type but it is getting an array. Are there any other functions that will allow adding an ArrayType?
object TestDataFrameWithMultiDimArray {
val nrRows = 1400
val nrCols = 500
/** Our main function where the action happens */
def main(args: Array[String]) {
// Create a SparkContext using every core of the local machine, named RatingsCounter
val sc = new SparkContext("local[*]", "TestDataFrameWithMultiDimArray")
val sqlContext = new SQLContext(sc)
val PropertiesDF = sqlContext.read
.format("com.crealytics.spark.excel")
.option("location", "C:/Users/tjoha/Desktop/Properties.xlsx")
.option("useHeader", "true")
.option("treatEmptyValuesAsNulls", "true")
.option("inferSchema", "true")
.option("addColorColumns", "False")
.option("sheetName", "Sheet1")
.load()
PropertiesDF.show()
PropertiesDF.printSchema()
val PropertiesDFPlusMultiDimArray = PropertiesDF.withColumn("ArrayCol", Array.ofDim[Any](nrRows,nrCols))
}
Thanks for your help.
Kind regards,
Johann
There are 2 problems in your code
the 2nd argument to withColumn needs to be a Column. you can wrap constant value with function col
Spark cant take Any as its column type, you need to use a specific supported type.
val PropertiesDFPlusMultiDimArray = PropertiesDF.withColumn("ArrayCol", lit(Array.ofDim[Int](nrRows,nrCols)))
will do the trick
I have a Spark job, written in Python, which is getting odd behaviour when checking for errors in its data. A simplified version is below:
from pyspark.sql import SparkSession
from pyspark.sql.types import StringType, StructType, StructField, DoubleType
from pyspark.sql.functions import col, lit
spark = SparkSession.builder.master("local[3]").appName("pyspark-unittest").getOrCreate()
spark.conf.set("mapreduce.fileoutputcommitter.marksuccessfuljobs", "false")
SCHEMA = StructType([
StructField("headerDouble", DoubleType(), False),
StructField("ErrorField", StringType(), False)
])
dataframe = (
spark.read
.option("header", "true")
.option("mode", "PERMISSIVE")
.option("columnNameOfCorruptRecord", "ErrorField")
.schema(SCHEMA).csv("./x.csv")
)
total_row_count = dataframe.count()
print("total_row_count = " + str(total_row_count))
errors = dataframe.filter(col("ErrorField").isNotNull())
errors.show()
error_count = errors.count()
print("errors count = " + str(error_count))
The csv it is reading is simply:
headerDouble
wrong
The relevant output of this is
total_row_count = 1
+------------+----------+
|headerDouble|ErrorField|
+------------+----------+
| null| wrong|
+------------+----------+
errors count = 0
Now how does this possibly happen? If the dataframe has a record, how is being counted as 0? Is this a bug in the Spark infrastructure or am I missing something?
EDIT: Looks like this might be a known bug on Spark 2.2 which has been fixed in Spark 2.3 - https://issues.apache.org/jira/browse/SPARK-21610
Thanks #user6910411 - does seem to be a bug. I've raised an issue in the Spark project's bug tracker.
I'm speculating that Spark is getting confused due to the presence of the ErrorField in the schema which is also being specified as the error column and being used to filter the dataframe.
Meanwhile I think I've found a workaround to count the dataframe rows at a reasonable speed:
def count_df_with_spark_bug_workaround(df):
return sum(1 for _ in df.toLocalIterator())
Not quite sure why this gives the right answer when .count() doesn't work.
Jira ticket I raised:
https://issues.apache.org/jira/browse/SPARK-24147
This turned out to be a duplicate of:
https://issues.apache.org/jira/browse/SPARK-21610
I'm quite new to pyspark and am trying to use it to process a large dataset which is saved as a csv file.
I'd like to read CSV file into spark dataframe, drop some columns, and add new columns.
How should I do that?
I am having trouble getting this data into a dataframe. This is a stripped down version of what I have so far:
def make_dataframe(data_portion, schema, sql):
fields = data_portion.split(",")
return sql.createDateFrame([(fields[0], fields[1])], schema=schema)
if __name__ == "__main__":
sc = SparkContext(appName="Test")
sql = SQLContext(sc)
...
big_frame = data.flatMap(lambda line: make_dataframe(line, schema, sql))
.reduce(lambda a, b: a.union(b))
big_frame.write \
.format("com.databricks.spark.redshift") \
.option("url", "jdbc:redshift://<...>") \
.option("dbtable", "my_table_copy") \
.option("tempdir", "s3n://path/for/temp/data") \
.mode("append") \
.save()
sc.stop()
This produces an error TypeError: 'JavaPackage' object is not callable at the reduce step.
Is it possible to do this? The idea with reducing to a dataframe is to be able to write the resulting data to a database (Redshift, using the spark-redshift package).
I have also tried using unionAll(), and map() with partial() but can't get it to work.
I am running this on Amazon's EMR, with spark-redshift_2.10:2.0.0, and Amazon's JDBC driver RedshiftJDBC41-1.1.17.1017.jar.
Update - answering also your question in comments:
Read data from CSV to dataframe:
It seems that you only try to read CSV file into a spark dataframe.
If so - my answer here: https://stackoverflow.com/a/37640154/5088142 cover this.
The following code should read CSV into a spark-data-frame
import pyspark
sc = pyspark.SparkContext()
sql = SQLContext(sc)
df = (sql.read
.format("com.databricks.spark.csv")
.option("header", "true")
.load("/path/to_csv.csv"))
// these lines are equivalent in Spark 2.0 - using [SparkSession][1]
from pyspark.sql import SparkSession
spark = SparkSession \
.builder \
.appName("Python Spark SQL basic example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()
spark.read.format("csv").option("header", "true").load("/path/to_csv.csv")
spark.read.option("header", "true").csv("/path/to_csv.csv")
drop column
you can drop column using "drop(col)"
https://spark.apache.org/docs/1.6.2/api/python/pyspark.sql.html
drop(col)
Returns a new DataFrame that drops the specified column.
Parameters: col – a string name of the column to drop, or a Column to drop.
>>> df.drop('age').collect()
[Row(name=u'Alice'), Row(name=u'Bob')]
>>> df.drop(df.age).collect()
[Row(name=u'Alice'), Row(name=u'Bob')]
>>> df.join(df2, df.name == df2.name, 'inner').drop(df.name).collect()
[Row(age=5, height=85, name=u'Bob')]
>>> df.join(df2, df.name == df2.name, 'inner').drop(df2.name).collect()
[Row(age=5, name=u'Bob', height=85)]
add column
You can use "withColumn"
https://spark.apache.org/docs/1.6.2/api/python/pyspark.sql.html
withColumn(colName, col)
Returns a new DataFrame by adding a column or replacing the existing column that has the same name.
Parameters:
colName – string, name of the new column.
col – a Column expression for the new column.
>>> df.withColumn('age2', df.age + 2).collect()
[Row(age=2, name=u'Alice', age2=4), Row(age=5, name=u'Bob', age2=7)]
Note: spark has a lot of other functions which can be used (e.g. you can use "select" instead of "drop")
I would like to create a Spark Dataset from a simple CSV file. Here are the contents of the CSV file:
name,state,number_of_people,coolness_index
trenton,nj,"10","4.5"
bedford,ny,"20","3.3"
patterson,nj,"30","2.2"
camden,nj,"40","8.8"
Here is the code to make the Dataset:
var location = "s3a://path_to_csv"
case class City(name: String, state: String, number_of_people: Long)
val cities = spark.read
.option("header", "true")
.option("charset", "UTF8")
.option("delimiter",",")
.csv(location)
.as[City]
Here is the error message: "Cannot up cast number_of_people from string to bigint as it may truncate"
Databricks talks about creating Datasets and this particular error message in this blog post.
Encoders eagerly check that your data matches the expected schema,
providing helpful error messages before you attempt to incorrectly
process TBs of data. For example, if we try to use a datatype that is
too small, such that conversion to an object would result in
truncation (i.e. numStudents is larger than a byte, which holds a
maximum value of 255) the Analyzer will emit an AnalysisException.
I am using the Long type, so I didn't expect to see this error message.
Use schema inference:
val cities = spark.read
.option("inferSchema", "true")
...
or provide schema:
val cities = spark.read
.schema(StructType(Array(StructField("name", StringType), ...)
or cast:
val cities = spark.read
.option("header", "true")
.csv(location)
.withColumn("number_of_people", col("number_of_people").cast(LongType))
.as[City]
with your case class as
case class City(name: String, state: String, number_of_people: Long),
you just need one line
private val cityEncoder = Seq(City("", "", 0)).toDS
then you code
val cities = spark.read
.option("header", "true")
.option("charset", "UTF8")
.option("delimiter",",")
.csv(location)
.as[City]
will just work.
This is the official source [http://spark.apache.org/docs/latest/sql-programming-guide.html#overview][1]