I would like to create a Spark Dataset from a simple CSV file. Here are the contents of the CSV file:
name,state,number_of_people,coolness_index
trenton,nj,"10","4.5"
bedford,ny,"20","3.3"
patterson,nj,"30","2.2"
camden,nj,"40","8.8"
Here is the code to make the Dataset:
var location = "s3a://path_to_csv"
case class City(name: String, state: String, number_of_people: Long)
val cities = spark.read
.option("header", "true")
.option("charset", "UTF8")
.option("delimiter",",")
.csv(location)
.as[City]
Here is the error message: "Cannot up cast number_of_people from string to bigint as it may truncate"
Databricks talks about creating Datasets and this particular error message in this blog post.
Encoders eagerly check that your data matches the expected schema,
providing helpful error messages before you attempt to incorrectly
process TBs of data. For example, if we try to use a datatype that is
too small, such that conversion to an object would result in
truncation (i.e. numStudents is larger than a byte, which holds a
maximum value of 255) the Analyzer will emit an AnalysisException.
I am using the Long type, so I didn't expect to see this error message.
Use schema inference:
val cities = spark.read
.option("inferSchema", "true")
...
or provide schema:
val cities = spark.read
.schema(StructType(Array(StructField("name", StringType), ...)
or cast:
val cities = spark.read
.option("header", "true")
.csv(location)
.withColumn("number_of_people", col("number_of_people").cast(LongType))
.as[City]
with your case class as
case class City(name: String, state: String, number_of_people: Long),
you just need one line
private val cityEncoder = Seq(City("", "", 0)).toDS
then you code
val cities = spark.read
.option("header", "true")
.option("charset", "UTF8")
.option("delimiter",",")
.csv(location)
.as[City]
will just work.
This is the official source [http://spark.apache.org/docs/latest/sql-programming-guide.html#overview][1]
Related
I am trying to read a Spark DataFrame from an 'excel' file. I used the crealytics dependency.
Without any predefined schema, all rows are correctly read but as only string type columns.
To prevent that, I am using my own schema (where I mentioned certain columns to be Integer type), but in this case, most of the rows are dropped when the file is being read.
The library dependency used in build.sbt:
"com.crealytics" %% "spark-excel" % "0.11.1",
Scala version - 2.11.8
Spark version - 2.3.2
val inputDF = sparkSession.read.excel(useHeader = true).load(inputLocation(0))
The above reads all the data - around 25000 rows.
But,
val inputWithSchemaDF: DataFrame = sparkSession.read
.format("com.crealytics.spark.excel")
.option("useHeader" , "false")
.option("inferSchema", "false")
.option("addColorColumns", "true")
.option("treatEmptyValuesAsNulls" , "false")
.option("keepUndefinedRows", "true")
.option("maxRowsInMey", 2000)
.schema(templateSchema)
.load(inputLocation)
This gives me only 450 rows.
Is there a way to prevent that? Thanks in advance! (edited)
As of now, I haven't found a fix to this problem, but I tried solving it in a different way by manually type-casting. To make it a bit better in terms of number of lines of code, I took the help of a for loop. My solutions is as follows:
Step 1: Create my own schema of type 'StructType':
val requiredSchema = new StructType()
.add("ID", IntegerType, true)
.add("Vendor", StringType, true)
.add("Brand", StringType, true)
.add("Product Name", StringType, true)
.add("Net Quantity", StringType, true)
Step 2: Type casting the Dataframe AFTER it has been read (WITHOUT the custom schema) from the excel file (instead of using the schema while reading the data):
def convertInputToDesiredSchema(inputDF: DataFrame, requiredSchema: StructType)(implicit sparkSession: SparkSession) : DataFrame =
{
var schemaDf: DataFrame = inputDF
for(i <- inputDF.columns.indices)
{
if(inputDF.schema(i).dataType.typeName != requiredSchema(i).dataType.typeName)
{
schemaDf = schemaDf.withColumn(schemaDf.columns(i), col(schemaDf.columns(i)).cast(requiredSchema.apply(i).dataType))
}
}
schemaDf
}
This might not be an efficient solution, but is better than typing out too many lines of code to typecast multiple columns.
I am still searching for a solution to my original question.
This solution is just in case someone might want to try and are in immediate need of a quick fix.
Here's a workaround, using PySpark, using a schema that consists of "fieldname" and "dataType":
# 1st load the dataframe with StringType for all columns
from pyspark.sql.types import *
input_df = spark.read.format("com.crealytics.spark.excel") \
.option("header", isHeaderOn) \
.option("treatEmptyValuesAsNulls", "true") \
.option("dataAddress", xlsxAddress1) \
.option("setErrorCellsToFallbackValues", "true") \
.option("ignoreLeadingWhiteSpace", "true") \
.option("ignoreTrailingWhiteSpace", "true") \
.load(inputfile)
# 2nd Modify the datatypes within the dataframe using a file containing column names and the expected data type.
dtypes = pd.read_csv("/dbfs/mnt/schema/{}".format(file_schema_location), header=None).to_records(index=False).tolist()
fields = [StructField(dtype[0], globals()[f'{dtype[1]}']()) for dtype in dtypes]
schema = StructType(fields)
for dt in dtypes:
colname =dt[0]
coltype = dt[1].replace("Type","")
input_df = input_df.withColumn(colname, col(colname).cast(coltype))
If I understand correctly, ArrayType can be added as Spark DataFrame columns. I am trying to add a multidimensional array to an existing Spark DataFrame by using the withColumn method. My idea is to have this array available with each DataFrame row in order to use it to send back information from the map function.
The error I get says that the withColumn function is looking for a Column type but it is getting an array. Are there any other functions that will allow adding an ArrayType?
object TestDataFrameWithMultiDimArray {
val nrRows = 1400
val nrCols = 500
/** Our main function where the action happens */
def main(args: Array[String]) {
// Create a SparkContext using every core of the local machine, named RatingsCounter
val sc = new SparkContext("local[*]", "TestDataFrameWithMultiDimArray")
val sqlContext = new SQLContext(sc)
val PropertiesDF = sqlContext.read
.format("com.crealytics.spark.excel")
.option("location", "C:/Users/tjoha/Desktop/Properties.xlsx")
.option("useHeader", "true")
.option("treatEmptyValuesAsNulls", "true")
.option("inferSchema", "true")
.option("addColorColumns", "False")
.option("sheetName", "Sheet1")
.load()
PropertiesDF.show()
PropertiesDF.printSchema()
val PropertiesDFPlusMultiDimArray = PropertiesDF.withColumn("ArrayCol", Array.ofDim[Any](nrRows,nrCols))
}
Thanks for your help.
Kind regards,
Johann
There are 2 problems in your code
the 2nd argument to withColumn needs to be a Column. you can wrap constant value with function col
Spark cant take Any as its column type, you need to use a specific supported type.
val PropertiesDFPlusMultiDimArray = PropertiesDF.withColumn("ArrayCol", lit(Array.ofDim[Int](nrRows,nrCols)))
will do the trick
Trying to read an avro file.
val df = spark.read.avro(file)
Running into Avro schema cannot be converted to a Spark SQL StructType: [ "null", "string" ]
Tried to manually create a schema, but now running into the following:
val s = StructType(List(StructField("value", StringType, nullable = true)))
val df = spark.read
.option("inferSchema", "false")
.schema(s)
.avro(file)
com.databricks.spark.avro.SchemaConverters$IncompatibleSchemaException: Cannot convert Avro schema to catalyst type because schema at path is not compatible (avroType = StructType(StructField(value,StringType,true)), sqlType = STRING).
Source Avro schema: ["null","string"].
Target Catalyst type: StructType(StructField(value,StringType,true))
Trying to override the avro schema (without the null) also does not work:
val df = spark.read
.option("inferSchema", "false")
.option("avroSchema", """["string"]""")
.avro(file)
Avro schema cannot be converted to a Spark SQL StructType: [ "string" ]
Looks like spark-avro only creates a GenericDatumReader[GenericRecord] and I need a GenericDatumReader[Utf8] :(
Please make sure you are providing the correct AVSC with the data type.
["null", "String"] is placed to take care of null values in the Avro data.
You can create the schema of your Avro file by:-
val schema = new Schema.Parser().parse(new File("user.avsc")
Or if you have Java Schema file then you can get the schema by doing:-
val schema = Schema.getClassSchema
now once you have the schema it is very simple to build a data frame with it.
code snippet:-
val df =sparkSession.read.format("com.databricks.spark.avro")
.option("avroSchema", schema.toString)
.load("/home/garvit.vijay/000009_0.avro")
df.printSchema()
df.show()
Hope it works for you.
I've seen this post about how to specify an schema for creating a Dataset
Spark Scala: Cannot up cast from string to int as it may truncate
val spark = SparkSession.builder()
.master("local")
.appName("test")
.getOrCreate()
import org.apache.spark.sql.Encoders
val schema = Encoders.product[Record].schema
val ds = spark.read
.option("header", "true")
.schema(schema) // passing schema
.option("timestampFormat", "MM/dd/yyyy HH:mm") // passing timestamp format
.csv(path)// csv path
.as[Record] // convert to DS
It works for me, but not when there are withispaces in the csv. Is it possible to trim the csv in this same spark.read sequence?
I'm trying to read couple of CSV files using SparkSession from a folder on HDFS ( i.e I don't want to read all the files in the folder )
I get the following error while running (code at the end):
Path does not exist:
file:/home/cloudera/works/JavaKafkaSparkStream/input/input_2.csv,
/home/cloudera/works/JavaKafkaSparkStream/input/input_1.csv
I don't want to use the pattern while reading, like /home/temp/*.csv, reason being in future I have logic to pick only one or two files in the folder out of 100 CSV files
Please advise
SparkSession sparkSession = SparkSession
.builder()
.appName(SparkCSVProcessors.class.getName())
.master(master).getOrCreate();
SparkContext context = sparkSession.sparkContext();
context.setLogLevel("ERROR");
Set<String> fileSet = Files.list(Paths.get("/home/cloudera/works/JavaKafkaSparkStream/input/"))
.filter(name -> name.toString().endsWith(".csv"))
.map(name -> name.toString())
.collect(Collectors.toSet());
SQLContext sqlCtx = sparkSession.sqlContext();
Dataset<Row> rawDataset = sparkSession.read()
.option("inferSchema", "true")
.option("header", "true")
.format("com.databricks.spark.csv")
.option("delimiter", ",")
//.load(String.join(" , ", fileSet));
.load("/home/cloudera/works/JavaKafkaSparkStream/input/input_2.csv, " +
"/home/cloudera/works/JavaKafkaSparkStream/input/input_1.csv");
UPDATE
I can iterate the files and do an union as below. Please recommend if there is a better way ...
Dataset<Row> unifiedDataset = null;
for (String fileName : fileSet) {
Dataset<Row> tempDataset = sparkSession.read()
.option("inferSchema", "true")
.option("header", "true")
.format("csv")
.option("delimiter", ",")
.load(fileName);
if (unifiedDataset != null) {
unifiedDataset= unifiedDataset.unionAll(tempDataset);
} else {
unifiedDataset = tempDataset;
}
}
Your problem is that you are creating a String with the value:
"/home/cloudera/works/JavaKafkaSparkStream/input/input_2.csv,
/home/cloudera/works/JavaKafkaSparkStream/input/input_1.csv"
Instead passing two filenames as parameters, which should be done by:
.load("/home/cloudera/works/JavaKafkaSparkStream/input/input_2.csv",
"/home/cloudera/works/JavaKafkaSparkStream/input/input_1.csv");
The comma has to be outside the strin and you should have two values, instead of one String.
From my understanding you want to read multiple files from HDFS without using regex like "/path/*.csv". what you are missing is each path needs to be separately with quotes and separated by ","
You can read using code as below, ensure that you have added SPARK CSV library :
sqlContext.read.format("csv").load("/home/cloudera/works/JavaKafkaSparkStream/input/input_1.csv","/home/cloudera/works/JavaKafkaSparkStream/input/input_2.csv")
Pattern can be helpful as well.
You want to select two files at time.
If they are sequencial then you could do something like
.load("/home/cloudera/works/JavaKafkaSparkStream/input/input_[1-2].csv")
if more files then just do input_[1-5].csv