Modify a layout-circle for turtles in NetLogo - layout

I am trying to get a layout-circlein NetLogo to have every second turtle to move one coordinate towards the centre, and the remaining ones to move away from it. I have found a way around using random, but the result is not really tidy. What I am trying to get is turtles that are positioned in a zig-zag manner around the circle, without the random component I am getting. For instance, that all even-numbered turtles move towards the centre, and all odd-numbered ones move away.
Any thoughts, hoping this is sufficiently clear?
to setup
clear-turtles
create-turtles 100
layout-circle (sort turtles) max-pxcor - 1
ask turtles [setxy xcor (ycor + random 3 - 1)]
end

Given that your turtles are sorted, using their who would work. Also, if you want to preserve the circle layout, you should have turtles move along the radius rather than according to the world's coordinates (and surely get rid of random if you want no random effects).
Before we proceed, a big warning: you will read quite regularly that using agents' who is bad NetLogo coding practice (I myself still need to understand exactly why that is dangerous).
Considering that your turtles are sorted in the layout and assuming this passage happens just upon setup, I think it is sufficiently safe to use who in your case - however, I also include an approach that doesn't use who, which would also be needed in case of unsorted turtles.
In both cases, the outcome is this:
(note that this perfect zigzag is possible only if turtles are created in an even number)
Approach with who
to setup
clear-turtles
create-turtles 100
layout-circle (sort turtles) max-pxcor - 1
ask turtles [
ifelse (who mod 2 = 0)
[forward 0.5]
[forward -0.5]
]
end
By doing this, every even turtle will move forwards by a bit, and every odd turtle will move backwards by the same amount.
Approach without who
This has to be more elaborated.
We take advantage of the fact that, if we make turtles move alternately forwards and backwards (achieved by ifelse (counter mod 2 = 0) [] []) from the circle layout, then the closest turtle to the last moving turtle (the moving turtle is reference-turtle in the code) will be the next turtle on the circle perimeter who hasn't moved yet.
At the end of every while iteration, the current reference-turtle will ask the closest turtle to become the new reference-turtle.
To make this all work, we can use counter both as the stop condition for the while loop and as the condition based on which turtles know whether to move forwards or backwards
to setup
clear-turtles
create-turtles 100
layout-circle turtles max-pxcor - 1
let counter 0
let reference-turtle one-of turtles
while [counter < count turtles] [
ask reference-turtle [
ifelse (counter mod 2 = 0)
[forward 0.5]
[forward -0.5]
ask min-one-of other turtles [distance myself] [
set reference-turtle self
]
]
set counter counter + 1
]
end

Related

How to pull tuples out of a list and make a turtle connect it as coordinates?

Write a function called connectTheDots that takes in a list of tuples as its input and an optional color input as well. The default color value should be black. Each tuple is a coordinate pair (x, y) for a turtle. The function will have the turtle trace out a picture by starting at the first coordinate and then moving to each coordinate in turn.
Your function should do the following:
a. Create a turtle, setting the turtle’s color and speed appropriately
b. Check if the input list is empty: if it is empty then nothing else should happen!
c. Without leaving a line behind, move the turtle to the first location given in the list. Then start leaving a line again. Note: recall how to pull values out of a list, and also know that the goto method can take a single (x, y) tuple as its input: myTurtle.goto( (25, 25) ) will move myTurtle to x = 25 and y = 25.
d. After the turtle is at the starting coordinate, move it to each coordinate in the list in turn.
This is what I have been able to do so far:
def connectTheDots(list1, color ="black"):
myTurtle = turtle.Turtle()
myTurtle.speed(1)
myTurtle.goto(list1[0])
for x,y in list1[1:]: #I'm unsure if this is correct
myTurtle.goto(x,y)
You have most of what you need but are probably making it more complicated than needed and are missing some small details.
For step "a" you need to explicitly set the color (you passed it in just fine). You are probably better off using a symbolic speed instead of a numeric one.
For step "b", if you have a proper for ... in loop, you don't need to explicitly check if the list is empty as the loop won't run if it is. Your splitting off the first item myTurtle.goto(list1[0]) works against you here as there may not be one, causing an IndexError.
For step "c" you need to add another command. Turtles start life in the center of the screen with their pens down. You need to raise the pen up after creating your turtle. But you don't need to explicitly move to the starting position, let your loop handle that.
The trick we'll use for step "c" and step "d" is to put the pen down after the goto() in the loop. The first time, this actually puts the pen down, after that, it's a harmless no-op:
import turtle
def connectTheDots(coordinates, color="black"):
myTurtle = turtle.Turtle()
myTurtle.speed("slowest")
myTurtle.color(color)
myTurtle.penup()
for coordinate in coordinates:
myTurtle.goto(coordinate)
myTurtle.pendown() # redundant after first iteration
dots = ((34, 56), (100, 240), (230, 105), (34, 56))
connectTheDots(dots, "green")
turtle.done()
If it bothers you that we're putting the pen down unnecessarily in the loop, then we can replace myTurtle.pendown() with:
if not myTurtle.isdown():
myTurtle.pendown()

How can I append Turtle clones to a list without cloning indefinitely?

I have to write a program in Python using Turtle that reads a list of instructions from a file and draws a Turtle diagram based on the inputs. The possible inputs are forward, left, right, and split. If the input is split, I have to clone all of the turtles in a list and append the new Turtles to the list. All new clones should be turned right by x degrees. The problem is, the turtles clone indefinitely.
def navigate(directions):
turtles = []
commands = []
first = turtle.Turtle()
turtles.append(first)
turtle.width(10)
for turt in turtles:
turt.speed('fastest')
for step in directions:
if step[0] == 'forward':
turt.forward(step[1])
elif step[0] == 'left':
turt.left(step[1])
elif step[0] == 'right':
turt.right(step[1])
elif step[0] == 'split':
new = turt.clone()
turtles.append(new)
turt.right(step[1])
Directions is a list of tuples where the first value of each tuple is the command (e.g. forward, left, right, or split) and the second is the degree (How far forward to go, how many degrees to turn). But the turtle continue to clone forever. How can I adjust this code so that it only clones a given number of times? Here is my sample input file:
forward 50
left 20
split 40
forward 50
left 20
split 40
forward 50
left 20
split 40
forward 50
left 20
split 40
forward 50
left 20
Firstly, you have a logic error. Your outer loop iterates over the turtles, and then inside the loop, it processes all the steps for each turtle separately. This is incorrect; even if it worked, it would apply instructions from before the split to turtles created after it. (That would effectively apply those preceding instructions twice to the same turtle, as well as execute the split again.) You need to process a single step at a time on all turtles. So the loop needs to be over the directions, not the turtles:
for step in directions:
# Process the step
Now that we have the loops swapped, a solution becomes more obvious. We can check the step and have special handling for the 'split' case:
for step in directions:
if step[0] == 'split':
# Clone all the turtles here
else:
for turt in turtles:
if step[0] == 'forward':
turt.forward(step[1])
elif step[0] == 'left':
...
I chose to use a single loop for the movement cases, but it would be equally valid to have a loop for each case if you prefer.
We still have the issue of creating the clones and adding them to the list. You already saw this won't work:
for turt in turtles:
turtles.append(turt.clone())
So we need to store all these new clones without modifying the list we're looping over. We can do that with a temporary list:
turtle_clones = []
for turt in turtles:
turtle_clones.append(turt.clone())
And then we just need to put turtle_clones onto the end of turtles. I'll leave combining the two lists as an exercise for you.
Bonus Material
Here are some suggestions to make your code cleaner:
Use unpacking so you don't have to have indexes everywhere.
You actually don't need to access the two pieces of data in step using an index. You can use unpacking to put each element in its own variable:
for action, value in directions:
if action == 'split':
...
else:
...
turt.forward(value)
This makes you code much simpler and easy to read, although you can probably think of a better name for value.
You actually don't have to use an explicit temporary list and for loop to make the clones. You can use a list comprehension:
turtle_clones = [t.clone() for t in turtles]
Again, much simpler and easy to read.
The first variable appears unnecessary. You can initialize the list containing the first turtle directly:
turtles = [turtle.Turtle()]

Positioning random points on a 2D plane

So here's a little bit of geometry for you. I've been stuck on this for a while now:
I need to write a script (in C#, but feel free to answer in whatever script you'd like) that generates random points. A points has to values, x and y.
I must generate N points total (where N > 1 and is also randomly up to 100).
point 1 must be x = 0, y = 0. point 2 must be of distance 1 from point 1. So that Root(x2 + y2) = 1.
point 3 must be of distance 1 from point 2 and so on and so forth.
Now here's the tricky part - point N must be of distance 1 from point 1. So if you were to connect all points into a single shape, you'd get a closed shape with each vertices being the same length.
(vertices may cross and you may even have two points at exactly the same location. As long as it's random).
Any idea how you'd do that?
I would do it with simulation of chain there are 2 basic ways one is start from regular polygon and then randomize one point a bit (rotate a bit) then iterate the rest to maintain the segment size=1.
The second one is start with full random open chain (like in MBo answer) and then iteratively change the angles until the last point is on desired distance from first point. I think the second approach is a bit simpler to code...
If you want something more complicated then you can generate M random points and handle them as closed Bezier curve cubic patches loop control points. Then just find N equidistant points on it (this is hard task) and rescale the whole thing to match segment line size = 1
If you want to try first approach then
Regular polygon start (closed loop)
Start with regular polygon (equidistant points on circle). So divide circle to N angular segments. Select radius r so line length match l=1
so r=0.5/cos(pi/N) ... from half angle triangle
Make function to rotate i-th point by some single small step
So just rotate the i-th point around (i-1)th point with radius 1 and then iteratively change the {i+1,...N} points to match segments sizes
you can exploit symmetry to avoid bullet #2
but this will lead not to very random result for small N. Just inverse rotation of 2 touching segments for random point p(i) and loop this many times.
to make it more random you can apply symmetry on whole parts (between 2 random points) instead of on 2 lines only
The second approach is like this:
create randomized open chain (like in MBo's answer)
so all segments are already with size=1.0. Remember also the angle not just position
i-th point iteration
for simplicity let the points be called p1,p2,...pn
compute d0=||pn-p1|-1.0|
rotate point pi left by some small da angle step
compute dl=||pn-p1|-1.0|
rotate point pi right by 2.0*da
compute dr=||pn-p1|-1.0|
rotate point pi to original position ... left by da
now chose direction closer to the solution (min dl,dr,d0) so:
if d0 is minimal do not change this point at all and stop
if dl is minimal then rotate left by da while dl is lowering
if dr is minimal then rotate right by da while dr is lowering
solution
loop bullet #2 while the d=||pn-p0|-1.0| is lowering then change da to da*=0.1 and loop again. Stop if da step is too small or no change in d after loop iteration.
[notes]
Booth solutions are not precise your distances will be very close to 1.0 but can be +/- some error dependent on the last da step size. If you rotate point pi then just add/sub angle to all pi,pi+1,pi+2,..pn points
Edit: This is not an answer, closeness has not been taken into account.
It is known that Cos(Fi)^2 + Sin(Fi)^2 = 1 for any angle Fi
So you may use the next approach:
P[0].X = 0
P[0].Y = 0
for i = 1 .. N - 1:
RandomAngle = 2 * Pi * Random(0..1)
P[i].X = P[i-1].X + Cos(RandomAngle)
P[i].Y = P[i-1].Y + Sin(RandomAngle)

Finding the bounds of an area covered by n of m rectangles

I have a set of m non-rotated, integer (pixel) aligned rectangles, each of which may or may not overlap. The rectangles cover thousands of pixels. I need to find the minimum sized bounding box that covers all areas that are covered by n of the m rectangles.
A (dirty) way of doing this is to paint a canvas that covers the area of all the targets. This is O(mk) where m is the number of rectangles and k is the number of pixels per rectangle. However since k is much greater than m I think there is a better solution out there.
This feels like a dynamic programming problem...but I am having trouble figuring out the recursion.
Solution which is better but still not great:
Sort the start and end points of all the rectangles in the X direction O(mlogm), iterate and find the x positions that may have over n rectangles, O(m) loop. For each x position that may have over n rectangles, take the rectangles at that position and sort the starts and stops at that position (O(mlogm)). Find the region of overlap, keep track of the bounds that way. Overall, O(m^2logm).
Hello MadScienceDreams,
Just to clarify, the bounding box is also non-rotated, correct?
If this is the case, then just keep track of the four variables: minX, maxX, minY, maxY–representing left-most, right-most, top-most, and bottom-most pixels–that define the bounding box, loop through each of the rectangles updating the four variables, and defining the new bounding box given those four variables.
EDIT
It looks like you are asking about finding the bounds of some subset of rectangles, not the whole set.
So you have M rectangles, and you choose N rectangles from them, and find the bounds within that.
Even in this situation, looping through the N rectangles and keeping track of their bound would be at most O(m), which isn't bad at all.
I feel that I must be misunderstanding your question since this response isn't what you are probably looking for; is your question actually trying to ask how to precompute the bounds so that given any subset, know the total bounds in constant time?
Is this defines your question? For bounding box => #rect_label >= n
How about we starts with one box and find the next box that has nearest furthest corner from it. Now we have a region with two box. Recursively find the next region, until we have n boxes.
While we need to start on every box, we only need to actively work on the currently smallest regions. The effect is we start from the smallest cluster of boxes and expand out from there.
If n is closer to m than 0, we can reverse the search tree so that we start from the omni-all-enclosing box, chopping off each bordering box to create the next search level. Assuming we only actively work on the smallest remaining region, effect is we chop off the emptiest region first.
Is it too complicated? Sorry I can't remember the name of this search. I'm not good at maths, so I'll skip the O notation. >_<
I propose the following algorithm :
prepareData();
if (findBorder('left')) {
foreach (direction in ['top', 'right', 'bottom']) {
findBorder(direction)
}
} else noIntersectionExists
prepareData (O(mlogm)):
Order vertical bounds and horizontal bounds
Save the result as:
- two arrays that point to the rectangle (arrX and arrY)
- save the index as a property of the rectangle (rectangle.leftIndex, rectangle.topIndex, etc.
findBorder(left): // the other direction are similar
best case O(n), worst case O(2m-n)
arrIntersections = new Array;
//an intersection has a depth (number of rectangles intersected), a top and bottom border and list of rectangles
for(i=0; i < 2*m-n-1; i++){ // or (i = 2*m-1; i > n; i--)
if(isLeftBorder(arrX[i])){
addToIntersections(arrX[i].rectangle, direction);
if(max(intersections.depth) = n) break;
} else {
removeFromIntersections(arrX[i].rectangle, direction);
}
}
addToIntersections(rectangle, direction): // explanations for direction=left
Best case: O(n), worst case: O(m)
hasIntersected = false;
foreach(intersection in intersection){
if(intersect(intersection, rectangle)){
hasIntersected = true
intersections[] = {
depth: intersection.depth,
bottom: min(intersection.bottom, rectangle.bottom),
top: max(...)}
intersection.depth++
intersection.bottom = max(intersection.bottom, rectangle.bottom)
intersection.top = max(...)
}
}
if(!hasIntersected)
intersections[]={depth:1, bottom:rectangle.bottom, top:rectangle.top}
This gives an overall order between O(n^2) and O(m*(m-n/2))
I hope my pseudo code is clear enough

How to calculate area of intersection of an arbitrary triangle with a square?

So, I've been struggling with a frankly now infuriating problem all day today.
Given a set of verticies of a triangle on a plane (just 3 points, 6 free parameters), I need to calculate the area of intersection of this triangle with the unit square defined by {0,0} and {1,1}. (I choose this because any square in 2D can be transformed to this, and the same transformation can move the 3 vertices).
So, now the problem is simplified down to only 6 parameters, 3 points... which I think is short enough that I'd be willing to code up the full solution / find the full solution.
( I would like this to run on a GPU for literally more than 2 million triangles every <0.5 seconds, if possible. as for the need for simplification / no data structures / libraries)
In terms of my attempt at the solution, I've... got a list of ways I've come up with, none of which seem fast or ... specific to the nice case (too general).
Option 1: Find the enclosed polygon, it can be anything from a triangle up to a 6-gon. Do this by use of some intersection of convex polygon in O(n) time algorithms that I found. Then I would sort these intersection points (new vertices, up to 7 of them O(n log n) ), in either CW or CCw order, so that I can run a simple area algorithm on the points (based on Greens function) (O(n) again). This is the fastest i can come with for an arbitrary convex n-gon intersecting with another m-gon. However... my problem is definitely not that complex, its a special case, so it should have a better solution...
Option 2:
Since I know its a triangle and unit square, i can simply find the list of intersection points in a more brute force way (rather than using some algorithm that is ... frankly a little frustrating to implement, as listed above)
There are only 19 points to check. 4 points are corners of square inside of triangle. 3 points are triangle inside square. And then for each line of the triangle, each will intersect 4 lines from the square (eg. y=0, y=1, x=0, x=1 lines). that is another 12 points. so, 12+3+4 = 19 points to check.
Once I have the, at most 6, at fewest 3, points that do this intersection, i can then follow up with one of two methods that I can think of.
2a: Sort them by increasing x value, and simply decompose the shape into its sub triangle / 4-gon shapes, each with an easy formula based on the limiting top and bottom lines. sum up the areas.
or 2b: Again sort the intersection points in some cyclic way, and then calculate the area based on greens function.
Unfortunately, this still ends up being just as complex as far as I can tell. I can start breaking up all the cases a little more, for finding the intersection points, since i know its just 0s and 1s for the square, which makes the math drop out some terms.. but it's not necessarily simple.
Option 3: Start separating the problem based on various conditions. Eg. 0, 1, 2, or 3 points of triangle inside square. And then for each case, run through all possible number of intersections, and then for each of those cases of polygon shapes, write down the area solution uniquely.
Option 4: some formula with heaviside step functions. This is the one I want the most probably, I suspect it'll be a little... big, but maybe I'm optimistic that it is possible, and that it would be the fastest computationally run time once I have the formula.
--- Overall, I know that it can be solved using some high level library (clipper for instance). I also realize that writing general solutions isn't so hard when using data structures of various kinds (linked list, followed by sorting it). And all those cases would be okay, if I just needed to do this a few times. But, since I need to run it as an image processing step, on the order of >9 * 1024*1024 times per image, and I'm taking images at .. lets say 1 fps (technically I will want to push this speed up as fast as possible, but lower bound is 1 second to calculate 9 million of these triangle intersection area problems). This might not be possible on a CPU, which is fine, I'll probably end up implementing it in Cuda anyways, but I do want to push the limit of speed on this problem.
Edit: So, I ended up going with Option 2b. Since there are only 19 intersections possible, of which at most 6 will define the shape, I first find those 3 to 6 verticies. Then i sort them in a cyclic (CCW) order. And then I find the area by calculating the area of that polygon.
Here is my test code I wrote to do that (it's for Igor, but should be readable as pseudocode) Unfortunately it's a little long winded, but.. I think other than my crappy sorting algorithm (shouldn't be more than 20 swaps though, so not so much overhead for writing better sorting)... other than that sorting, I don't think I can make it any faster. Though, I am open to any suggestions or oversights I might have had in chosing this option.
function calculateAreaUnitSquare(xPos, yPos)
wave xPos
wave yPos
// First, make array of destination. Only 7 possible results at most for this geometry.
Make/o/N=(7) outputVertexX = NaN
Make/o/N=(7) outputVertexY = NaN
variable pointsfound = 0
// Check 4 corners of square
// Do this by checking each corner against the parameterized plane described by basis vectors p2-p0 and p1-p0.
// (eg. project onto point - p0 onto p2-p0 and onto p1-p0. Using appropriate parameterization scaling (not unit).
// Once we have the parameterizations, then it's possible to check if it is inside the triangle, by checking that u and v are bounded by u>0, v>0 1-u-v > 0
variable denom = yPos[0]*xPos[1]-xPos[0]*yPos[1]-yPos[0]*xPos[2]+yPos[1]*xPos[2]+xPos[0]*yPos[2]-xPos[1]*yPos[2]
//variable u00 = yPos[0]*xPos[1]-xPos[0]*yPos[1]-yPos[0]*Xx+yPos[1]*Xx+xPos[0]*Yx-xPos[1]*Yx
//variable v00 = -yPos[2]*Xx+yPos[0]*(Xx-xPos[2])+xPos[0]*(yPos[2]-Yx)+yPos[2]*Yx
variable u00 = (yPos[0]*xPos[1]-xPos[0]*yPos[1])/denom
variable v00 = (yPos[0]*(-xPos[2])+xPos[0]*(yPos[2]))/denom
variable u01 =(yPos[0]*xPos[1]-xPos[0]*yPos[1]+xPos[0]-xPos[1])/denom
variable v01 =(yPos[0]*(-xPos[2])+xPos[0]*(yPos[2]-1)+xPos[2])/denom
variable u11 = (yPos[0]*xPos[1]-xPos[0]*yPos[1]-yPos[0]+yPos[1]+xPos[0]-xPos[1])/denom
variable v11 = (-yPos[2]+yPos[0]*(1-xPos[2])+xPos[0]*(yPos[2]-1)+xPos[2])/denom
variable u10 = (yPos[0]*xPos[1]-xPos[0]*yPos[1]-yPos[0]+yPos[1])/denom
variable v10 = (-yPos[2]+yPos[0]*(1-xPos[2])+xPos[0]*(yPos[2]))/denom
if(u00 >= 0 && v00 >=0 && (1-u00-v00) >=0)
outputVertexX[pointsfound] = 0
outputVertexY[pointsfound] = 0
pointsfound+=1
endif
if(u01 >= 0 && v01 >=0 && (1-u01-v01) >=0)
outputVertexX[pointsfound] = 0
outputVertexY[pointsfound] = 1
pointsfound+=1
endif
if(u10 >= 0 && v10 >=0 && (1-u10-v10) >=0)
outputVertexX[pointsfound] = 1
outputVertexY[pointsfound] = 0
pointsfound+=1
endif
if(u11 >= 0 && v11 >=0 && (1-u11-v11) >=0)
outputVertexX[pointsfound] = 1
outputVertexY[pointsfound] = 1
pointsfound+=1
endif
// Check 3 points for triangle. This is easy, just see if its bounded in the unit square. if it is, add it.
variable i = 0
for(i=0; i<3; i+=1)
if(xPos[i] >= 0 && xPos[i] <= 1 )
if(yPos[i] >=0 && yPos[i] <=1)
if(!((xPos[i] == 0 || xPos[i] == 1) && (yPos[i] == 0 || yPos[i] == 1) ))
outputVertexX[pointsfound] = xPos[i]
outputVertexY[pointsfound] = yPos[i]
pointsfound+=1
endif
endif
endif
endfor
// Check intersections.
// Procedure is: loop over 3 lines of triangle.
// For each line
// Check if vertical
// If not vertical, find y intercept with x=0 and x=1 lines.
// if y intercept is between 0 and 1, then add the point
// Check if horizontal
// if not horizontal, find x intercept with y=0 and y=1 lines
// if x intercept is between 0 and 1, then add the point
for(i=0; i<3; i+=1)
variable iN = mod(i+1,3)
if(xPos[i] != xPos[iN])
variable tx0 = xPos[i]/(xPos[i] - xPos[iN])
variable tx1 = (xPos[i]-1)/(xPos[i] - xPos[iN])
if(tx0 >0 && tx0 < 1)
variable yInt = (yPos[iN]-yPos[i])*tx0+yPos[i]
if(yInt > 0 && yInt <1)
outputVertexX[pointsfound] = 0
outputVertexY[pointsfound] = yInt
pointsfound+=1
endif
endif
if(tx1 >0 && tx1 < 1)
yInt = (yPos[iN]-yPos[i])*tx1+yPos[i]
if(yInt > 0 && yInt <1)
outputVertexX[pointsfound] = 1
outputVertexY[pointsfound] = yInt
pointsfound+=1
endif
endif
endif
if(yPos[i] != yPos[iN])
variable ty0 = yPos[i]/(yPos[i] - yPos[iN])
variable ty1 = (yPos[i]-1)/(yPos[i] - yPos[iN])
if(ty0 >0 && ty0 < 1)
variable xInt = (xPos[iN]-xPos[i])*ty0+xPos[i]
if(xInt > 0 && xInt <1)
outputVertexX[pointsfound] = xInt
outputVertexY[pointsfound] = 0
pointsfound+=1
endif
endif
if(ty1 >0 && ty1 < 1)
xInt = (xPos[iN]-xPos[i])*ty1+xPos[i]
if(xInt > 0 && xInt <1)
outputVertexX[pointsfound] = xInt
outputVertexY[pointsfound] = 1
pointsfound+=1
endif
endif
endif
endfor
// Now we have all 6 verticies that we need. Next step: find the lowest y point of the verticies
// if there are multiple with same low y point, find lowest X of these.
// swap this vertex to be first vertex.
variable lowY = 1
variable lowX = 1
variable m = 0;
for (i=0; i<pointsfound ; i+=1)
if (outputVertexY[i] < lowY)
m=i
lowY = outputVertexY[i]
lowX = outputVertexX[i]
elseif(outputVertexY[i] == lowY)
if(outputVertexX[i] < lowX)
m=i
lowY = outputVertexY[i]
lowX = outputVertexX[i]
endif
endif
endfor
outputVertexX[m] = outputVertexX[0]
outputVertexY[m] = outputVertexY[0]
outputVertexX[0] = lowX
outputVertexY[0] = lowY
// now we have the bottom left corner point, (bottom prefered).
// calculate the cos(theta) of unit x hat vector to the other verticies
make/o/N=(pointsfound) angles = (p!=0)?( (outputVertexX[p]-lowX) / sqrt( (outputVertexX[p]-lowX)^2+(outputVertexY[p]-lowY)^2) ) : 0
// Now sort the remaining verticies based on this angle offset. This will orient the points for a convex polygon in its maximal size / ccw orientation
// (This sort is crappy, but there will be in theory, at most 25 swaps. Which in the grand sceme of operations, isn't so bad.
variable j
for(i=1; i<pointsfound; i+=1)
for(j=i+1; j<pointsfound; j+=1)
if( angles[j] > angles[i] )
variable tempX = outputVertexX[j]
variable tempY = outputVertexY[j]
outputVertexX[j] = outputVertexX[i]
outputVertexY[j] =outputVertexY[i]
outputVertexX[i] = tempX
outputVertexY[i] = tempY
variable tempA = angles[j]
angles[j] = angles[i]
angles[i] = tempA
endif
endfor
endfor
// Now the list is ordered!
// now calculate the area given a list of CCW oriented points on a convex polygon.
// has a simple and easy math formula : http://www.mathwords.com/a/area_convex_polygon.htm
variable totA = 0
for(i = 0; i<pointsfound; i+=1)
totA += outputVertexX[i]*outputVertexY[mod(i+1,pointsfound)] - outputVertexY[i]*outputVertexX[mod(i+1,pointsfound)]
endfor
totA /= 2
return totA
end
I think the Cohen-Sutherland line-clipping algorithm is your friend here.
First off check the bounding box of the triangle against the square to catch the trivial cases (triangle inside square, triangle outside square).
Next check for the case where the square lies completely within the triangle.
Next consider your triangle vertices A, B and C in clockwise order. Clip the line segments AB, BC and CA against the square. They will either be altered such that they lie within the square or are found to lie outside, in which case they can be ignored.
You now have an ordered list of up to three line segments that define the some of the edges intersection polygon. It is easy to work out how to traverse from one edge to the next to find the other edges of the intersection polygon. Consider the endpoint of one line segment (e) against the start of the next (s)
If e is coincident with s, as would be the case when a triangle vertex lies within the square, then no traversal is required.
If e and s differ, then we need to traverse clockwise around the boundary of the square.
Note that this traversal will be in clockwise order, so there is no need to compute the vertices of the intersection shape, sort them into order and then compute the area. The area can be computed as you go without having to store the vertices.
Consider the following examples:
In the first case:
We clip the lines AB, BC and CA against the square, producing the line segments ab>ba and ca>ac
ab>ba forms the first edge of the intersection polygon
To traverse from ba to ca: ba lies on y=1, while ca does not, so the next edge is ca>(1,1)
(1,1) and ca both lie on x=1, so the next edge is (1,1)>ca
The next edge is a line segment we already have, ca>ac
ac and ab are coincident, so no traversal is needed (you might be as well just computing the area for a degenerate edge and avoiding the branch in these cases)
In the second case, clipping the triangle edges against the square gives us ab>ba, bc>cb and ca>ac. Traversal between these segments is trivial as the start and end points lie on the same square edges.
In the third case the traversal from ba to ca goes through two square vertices, but it is still a simple matter of comparing the square edges on which they lie:
ba lies on y=1, ca does not, so next vertex is (1,1)
(1,1) lies on x=1, ca does not, so next vertex is (1,0)
(1,0) lies on y=0, as does ca, so next vertex is ca.
Given the large number of triangles I would recommend scanline algorithm: sort all the points 1st by X and 2nd by Y, then proceed in X direction with a "scan line" that keeps a heap of Y-sorted intersections of all lines with that line. This approach has been widely used for Boolean operations on large collections of polygons: operations such as AND, OR, XOR, INSIDE, OUTSIDE, etc. all take O(n*log(n)).
It should be fairly straightforward to augment Boolean AND operation, implemented with the scanline algorithm to find the areas you need. The complexity will remain O(n*log(n)) on the number of triangles. The algorithm would also apply to intersections with arbitrary collections of arbitrary polygons, in case you would need to extend to that.
On the 2nd thought, if you don't need anything other than the triangle areas, you could do that in O(n), and scanline may be an overkill.
I came to this question late, but I think I've come up with a more fully flushed out solution along the lines of ryanm's answer. I'll give an outline of for others trying to do this problem at least somewhat efficiently.
First you have two trivial cases to check:
1) Triangle lies entirely within the square
2) Square lies entirely within the triangle (Just check if all corners are inside the triangle)
If neither is true, then things get interesting.
First, use either the Cohen-Sutherland or Liang-Barsky algorithm to clip each edge of the triangle to the square. (The linked article contains a nice bit of code that you can essentially just copy-paste if you're using C).
Given a triangle edge, these algorithms will output either a clipped edge or a flag denoting that the edge lies entirely outside the square. If all edges lie outsize the square, then the triangle and the square are disjoint.
Otherwise, we know that the endpoints of the clipped edges constitute at least some of the vertices of the polygon representing the intersection.
We can avoid a tedious case-wise treatment by making a simple observation. All other vertices of the intersection polygon, if any, will be corners of the square that lie inside the triangle.
Simply put, the vertices of the intersection polygon will be the (unique) endpoints of the clipped triangle edges in addition to the corners of the square inside the triangle.
We'll assume that we want to order these vertices in a counter-clockwise fashion. Since the intersection polygon will always be convex, we can compute its centroid (the mean over all vertex positions) which will lie inside the polygon.
Then to each vertex, we can assign an angle using the atan2 function where the inputs are the y- and x- coordinates of the vector obtained by subtracting the centroid from the position of the vertex (i.e. the vector from the centroid to the vertex).
Finally, the vertices can be sorted in ascending order based on the values of the assigned angles, which constitutes a counter-clockwise ordering. Successive pairs of vertices correspond to the polygon edges.

Resources