Terraform Azure Databricks Provider Error - azure

I need some assistance to undertand the various forms of logging in to Databricks. I am using Terraform to provision Azure Databricks
I would like to know the difference in the two codes below
When i use option 1, i get the error as shown
Option 1:
required_providers {
azuread = "~> 1.0"
azurerm = "~> 2.0"
azuredevops = { source = "registry.terraform.io/microsoft/azuredevops", version = "~> 0.0" }
databricks = { source = "registry.terraform.io/databrickslabs/databricks", version = "~> 0.0" }
}
}
provider "random" {}
provider "azuread" {
tenant_id = var.project.arm.tenant.id
client_id = var.project.arm.client.id
client_secret = var.secret.arm.client.secret
}
provider "databricks" {
host = azurerm_databricks_workspace.db-workspace.workspace_url
azure_use_msi = true
}
resource "azurerm_databricks_workspace" "db-workspace" {
name = module.names-db-workspace.environment.databricks_workspace.name_unique
resource_group_name = module.resourcegroup.resource_group.name
location = module.resourcegroup.resource_group.location
sku = "premium"
public_network_access_enabled = true
custom_parameters {
no_public_ip = true
virtual_network_id = module.virtualnetwork["centralus"].virtual_network.self.id
public_subnet_name = module.virtualnetwork["centralus"].virtual_network.subnets["db-sub-1-public"].name
private_subnet_name = module.virtualnetwork["centralus"].virtual_network.subnets["db-sub-2-private"].name
public_subnet_network_security_group_association_id = module.virtualnetwork["centralus"].virtual_network.nsgs.associations.subnets["databricks-public-nsg-db-sub-1-public"].id
private_subnet_network_security_group_association_id = module.virtualnetwork["centralus"].virtual_network.nsgs.associations.subnets["databricks-private-nsg-db-sub-2-private"].id
}
tags = local.tags
}
Databricks Cluster Creation
resource "databricks_cluster" "dbcselfservice" {
cluster_name = format("adb-cluster-%s-%s", var.project.name, var.project.environment.name)
spark_version = var.spark_version
node_type_id = var.node_type_id
autotermination_minutes = 20
autoscale {
min_workers = 1
max_workers = 7
}
azure_attributes {
availability = "SPOT_AZURE"
first_on_demand = 1
spot_bid_max_price = 100
}
depends_on = [
azurerm_databricks_workspace.db-workspace
]
}
Databricks Workspace RBAC Permission
resource "databricks_group" "db-group" {
display_name = format("adb-users-%s", var.project.name)
allow_cluster_create = true
allow_instance_pool_create = true
depends_on = [
resource.azurerm_databricks_workspace.db-workspace
]
}
resource "databricks_user" "dbuser" {
count = length(local.display_name)
display_name = local.display_name[count.index]
user_name = local.user_name[count.index]
workspace_access = true
depends_on = [
resource.azurerm_databricks_workspace.db-workspace
]
}
Adding Members to Databricks Admin Group
resource "databricks_group_member" "i-am-admin" {
for_each = toset(local.email_address)
group_id = data.databricks_group.admins.id
member_id = databricks_user.dbuser[index(local.email_address, each.key)].id
depends_on = [
resource.azurerm_databricks_workspace.db-workspace
]
}
data "databricks_group" "admins" {
display_name = "admins"
depends_on = [
# resource.databricks_cluster.dbcselfservice,
resource.azurerm_databricks_workspace.db-workspace
]
}
The error that i get while TF apply is below :
Error: User not authorized
with databricks_user.dbuser[1],
on resources.adb.tf line 80, in resource "databricks_user" "dbuser":
80: resource "databricks_user" "dbuser"{
Error: User not authorized
with databricks_user.dbuser[0],
on resources.adb.tf line 80, in resource "databricks_user" "dbuser":
80: resource "databricks_user" "dbuser"{
Error: cannot refresh AAD token: adal:Refresh request failed. Status Code = '500'. Response body: {"error":"server_error", "error_description":"Internal server error"} Endpoint http://169.254.169.254/metadata/identity/oauth2/token?api-version=2018-02-01&resource=https%3A%2F%2Fmanagement.core.windows.net%2F
with databricks_group.db-group,
on resources.adb.tf line 80, in resource "databricks_group" "db-group":
71: resource "databricks_group" "db-group"{
Is the error coming because of this block below ?
provider "databricks" {
host = azurerm_databricks_workspace.db-workspace.workspace_url
azure_use_msi = true
}
I just need to login automatically when i click on the URL from the portal. So what shall i use for that? And why do we need to provide two times databricks providers, once under required_providers and again in provider "databricks"?
I have seen if i don't provide the second provider i get the error :
"authentication is not configured for provider"

As mentioned in the comments , If you are using Azure CLI authentication i.e. az login using your username and password , then you can use the below code :
terraform {
required_providers {
databricks = {
source = "databrickslabs/databricks"
version = "0.3.11"
}
}
}
provider "azurerm" {
features {}
}
provider "databricks" {
host = azurerm_databricks_workspace.example.workspace_url
}
resource "azurerm_databricks_workspace" "example" {
name = "DBW-ansuman"
resource_group_name = azurerm_resource_group.example.name
location = azurerm_resource_group.example.location
sku = "premium"
managed_resource_group_name = "ansuman-DBW-managed-without-lb"
public_network_access_enabled = true
custom_parameters {
no_public_ip = true
public_subnet_name = azurerm_subnet.public.name
private_subnet_name = azurerm_subnet.private.name
virtual_network_id = azurerm_virtual_network.example.id
public_subnet_network_security_group_association_id = azurerm_subnet_network_security_group_association.public.id
private_subnet_network_security_group_association_id = azurerm_subnet_network_security_group_association.private.id
}
tags = {
Environment = "Production"
Pricing = "Standard"
}
}
data "databricks_node_type" "smallest" {
local_disk = true
depends_on = [
azurerm_databricks_workspace.example
]
}
data "databricks_spark_version" "latest_lts" {
long_term_support = true
depends_on = [
azurerm_databricks_workspace.example
]
}
resource "databricks_cluster" "dbcselfservice" {
cluster_name = "Shared Autoscaling"
spark_version = data.databricks_spark_version.latest_lts.id
node_type_id = data.databricks_node_type.smallest.id
autotermination_minutes = 20
autoscale {
min_workers = 1
max_workers = 7
}
azure_attributes {
availability = "SPOT_AZURE"
first_on_demand = 1
spot_bid_max_price = 100
}
depends_on = [
azurerm_databricks_workspace.example
]
}
resource "databricks_group" "db-group" {
display_name = "adb-users-admin"
allow_cluster_create = true
allow_instance_pool_create = true
depends_on = [
resource.azurerm_databricks_workspace.example
]
}
resource "databricks_user" "dbuser" {
display_name = "Rahul Sharma"
user_name = "example#contoso.com"
workspace_access = true
depends_on = [
resource.azurerm_databricks_workspace.example
]
}
resource "databricks_group_member" "i-am-admin" {
group_id = databricks_group.db-group.id
member_id = databricks_user.dbuser.id
depends_on = [
resource.azurerm_databricks_workspace.example
]
}
Output:
If you are using Service Principal as authentication , then you can use something like below:
terraform {
required_providers {
databricks = {
source = "databrickslabs/databricks"
version = "0.3.11"
}
}
}
provider "azurerm" {
subscription_id = "948d4068-xxxx-xxxx-xxxx-e00a844e059b"
tenant_id = "72f988bf-xxxx-xxxx-xxxx-2d7cd011db47"
client_id = "f6a2f33d-xxxx-xxxx-xxxx-d713a1bb37c0"
client_secret = "inl7Q~Gvdxxxx-xxxx-xxxxyaGPF3uSoL"
features {}
}
provider "databricks" {
host = azurerm_databricks_workspace.example.workspace_url
azure_client_id = "f6a2f33d-xxxx-xxxx-xxxx-d713a1bb37c0"
azure_client_secret = "inl7Q~xxxx-xxxx-xxxxg6ntiyaGPF3uSoL"
azure_tenant_id = "72f988bf-xxxx-xxxx-xxxx-2d7cd011db47"
}
resource "azurerm_databricks_workspace" "example" {
name = "DBW-ansuman"
resource_group_name = azurerm_resource_group.example.name
location = azurerm_resource_group.example.location
sku = "premium"
managed_resource_group_name = "ansuman-DBW-managed-without-lb"
public_network_access_enabled = true
custom_parameters {
no_public_ip = true
public_subnet_name = azurerm_subnet.public.name
private_subnet_name = azurerm_subnet.private.name
virtual_network_id = azurerm_virtual_network.example.id
public_subnet_network_security_group_association_id = azurerm_subnet_network_security_group_association.public.id
private_subnet_network_security_group_association_id = azurerm_subnet_network_security_group_association.private.id
}
tags = {
Environment = "Production"
Pricing = "Standard"
}
}
data "databricks_node_type" "smallest" {
local_disk = true
depends_on = [
azurerm_databricks_workspace.example
]
}
data "databricks_spark_version" "latest_lts" {
long_term_support = true
depends_on = [
azurerm_databricks_workspace.example
]
}
resource "databricks_cluster" "dbcselfservice" {
cluster_name = "Shared Autoscaling"
spark_version = data.databricks_spark_version.latest_lts.id
node_type_id = data.databricks_node_type.smallest.id
autotermination_minutes = 20
autoscale {
min_workers = 1
max_workers = 7
}
azure_attributes {
availability = "SPOT_AZURE"
first_on_demand = 1
spot_bid_max_price = 100
}
depends_on = [
azurerm_databricks_workspace.example
]
}
resource "databricks_group" "db-group" {
display_name = "adb-users-admin"
allow_cluster_create = true
allow_instance_pool_create = true
depends_on = [
resource.azurerm_databricks_workspace.example
]
}
resource "databricks_user" "dbuser" {
display_name = "Rahul Sharma"
user_name = "example#contoso.com"
workspace_access = true
depends_on = [
resource.azurerm_databricks_workspace.example
]
}
resource "databricks_group_member" "i-am-admin" {
group_id = databricks_group.db-group.id
member_id = databricks_user.dbuser.id
depends_on = [
resource.azurerm_databricks_workspace.example
]
}
And why do we need to provide
two times databricks providers, once under required_providers and
again in provider "databricks"?
The required_providers is used to download and initialize the required providers from the source i.e. Terraform Registry . But the Provider Block is used for further configuration of that downloaded provider like describing client_id, features block etc. which can be used for authentication or other configuration.

The azure_use_msi option is primarily intended for use from CI/CD pipelines that are executed on machines with managed identity assigned to them. All possible authentication options are described in the documenation, but simplest way is to use authentication via Azure CLI, so you just need to leave host parameter in the provider block. If you don't have Azure CLI on that machine, you can use combination of host + personal access token instead.
if you're running that code from the machine with assigned managed identity, then you need to make sure that this identity is either added into workspace, or it has Contributor access to it - see Azure Databricks documentation for more details.

Related

Getting Error on the Terraform code while Azure App Registration Log Analytics API Permissions Allocation

I'm Creating the App Registration, App Registration Secrets, API Permissions, and Role Assignment via Terraform. I'm Able to allocate the MicroSoft Graph API Permissions and able to Grant Permissions. For Log Analytic API Permission Grant, I'm Getting Error on the Terraform code.
data "azuread_client_config" "current" {}
data "azuread_application_published_app_ids" "well_known" {}
resource "azuread_service_principal" "msgraph" {
application_id = data.azuread_application_published_app_ids.well_known.result.MicrosoftGraph
use_existing = true
owners = [data.azuread_client_config.current.object_id]
}
data "azuread_application_published_app_ids" "log" {}
resource "azuread_service_principal" "LogAnalyticsApi" {
application_id = data.azuread_application_published_app_ids.log.result.LogAnalyticsAPI
use_existing = true
owners = [data.azuread_client_config.current.object_id]
}
# Retrieve domain information
data "azuread_domains" "domain" {
only_initial = true
}
# Create an application
resource "azuread_application" "appreg" {
display_name = "Demo_App_Registration_Portal"
owners = [data.azuread_client_config.current.object_id]
sign_in_audience = "AzureADMultipleOrgs"
required_resource_access {
resource_app_id = data.azuread_application_published_app_ids.well_known.result.MicrosoftGraph
resource_access {
id = azuread_service_principal.msgraph.app_role_ids["User.Read.All"]
type = "Role"
}
resource_access {
id = azuread_service_principal.msgraph.app_role_ids["Directory.Read.All"]
type = "Role"
}
resource_access {
id = azuread_service_principal.msgraph.app_role_ids["Domain.Read.All"]
type = "Role"
}
resource_access {
id = azuread_service_principal.msgraph.app_role_ids["Domain.ReadWrite.All"]
type = "Role"
}
resource_access {
id = azuread_service_principal.msgraph.oauth2_permission_scope_ids["User.Read"]
type = "Scope"
}
resource_access {
id = azuread_service_principal.msgraph.oauth2_permission_scope_ids["Domain.ReadWrite.All"]
type = "Scope"
}
#####
resource_access {
id = azuread_service_principal.msgraph.app_role_ids["UserAuthenticationMethod.Read.All"]
type = "Role"
}
#####
}
#Log Analytic API Data Read Access
required_resource_access {
resource_app_id = data.azuread_application_published_app_ids.log.result.LogAnalyticsAPI
resource_access {
id = azuread_service_principal.LogAnalyticsAPI.app_role_ids["Data.Read"]
type = "Role"
}
}
}
#Creating Client Password for the Application
resource "azuread_application_password" "appregpassword" {
display_name = "Demo_App_Registration_Portal_Password"
application_object_id = azuread_application.appreg.object_id
depends_on = [
azuread_application.appreg
]
}
output "azuread_application_password" {
value = azuread_application_password.appregpassword.id
}
# Create a service principal
resource "azuread_service_principal" "appregsp" {
application_id = azuread_application.appreg.application_id
app_role_assignment_required = true
owners = [data.azuread_client_config.current.object_id]
}
resource "azuread_app_role_assignment" "example" {
app_role_id = azuread_service_principal.msgraph.app_role_ids["User.Read.All"]
principal_object_id = azuread_service_principal.appregsp.object_id
resource_object_id = azuread_service_principal.msgraph.object_id
}
resource "azuread_app_role_assignment" "Directory" {
app_role_id = azuread_service_principal.msgraph.app_role_ids["Directory.Read.All"]
principal_object_id = azuread_service_principal.appregsp.object_id
resource_object_id = azuread_service_principal.msgraph.object_id
}
resource "azuread_app_role_assignment" "Domain-Read" {
app_role_id = azuread_service_principal.msgraph.app_role_ids["Domain.Read.All"]
principal_object_id = azuread_service_principal.appregsp.object_id
resource_object_id = azuread_service_principal.msgraph.object_id
}
resource "azuread_app_role_assignment" "Domain-Read-Write" {
app_role_id = azuread_service_principal.msgraph.app_role_ids["Domain.ReadWrite.All"]
principal_object_id = azuread_service_principal.appregsp.object_id
resource_object_id = azuread_service_principal.msgraph.object_id
}
####
resource "azuread_app_role_assignment" "UserAuthenticationMethod-Read-All" {
app_role_id = azuread_service_principal.msgraph.app_role_ids["UserAuthenticationMethod.Read.All"]
principal_object_id = azuread_service_principal.appregsp.object_id
resource_object_id = azuread_service_principal.msgraph.object_id
}
####
resource "azuread_service_principal_delegated_permission_grant" "example" {
service_principal_object_id = azuread_service_principal.appregsp.object_id
resource_service_principal_object_id = azuread_service_principal.msgraph.object_id
claim_values = ["User.Read", "Domain.ReadWrite.All"]
}
##Log Analytics API Role Assignment
resource "azuread_app_role_assignment" "LogAnalytics-Read" {
app_role_id = azuread_service_principal.LogAnalyticsAPI.app_role_ids["Data.Read"]
principal_object_id = azuread_service_principal.appregsp.object_id
resource_object_id = azuread_service_principal.LogAnalyticsAPI.object_id
}
#Role Assigning to the App
data "azurerm_subscription" "primary" {
}
data "azurerm_client_config" "appregclient" {
}
resource "azurerm_role_assignment" "example" {
scope = data.azurerm_subscription.primary.id
role_definition_name = "Reader"
principal_id = azuread_service_principal.appregsp.object_id
depends_on = [
azuread_application.appreg
]
}
I'm Creating the App Registration, App Registration Secrets, API Permissions, and Role Assignment via Terraform. I'm Able to allocate the MicroSoft Graph API Permissions and able to Grant Permissions. For Log Analytic API Permission Grant, I'm Getting Error on the Terraform code. I have upload how I want Log Analytic API Permission in the Image.
But I'm getting the Error Message as below:
I tried to reproduce the same in my environment:
As we see azuread_service_principal block has been named LogAnalyticsApi and not LogAnalyticsAPI
resource "azuread_service_principal" "LogAnalyticsApi" {
application_id = data.azuread_application_published_app_ids.log.result.LogAnalyticsAPI
use_existing = true
owners = [data.azuread_client_config.current.object_id]
}
When changed it LogAnalyticsApi when referred in remaining blocks
For example:
resource "azuread_app_role_assignment" "LogAnalytics-Read" {
app_role_id = azuread_service_principal.LogAnalyticsApi.app_role_ids["Data.Read"]
principal_object_id = azuread_service_principal.appregsp.object_id
resource_object_id = azuread_service_principal.LogAnalyticsApi.object_id
}
Then the error is resolved.
But occurred to map element LogAnalyticsAPI to log result .
Please change it to MicrosoftGraph or AppIds present in this available ApplicationIds in place of “ application_id = data.azuread_application_published_app_ids.log.result.LogAnalyticsAPI “
resource "azuread_service_principal" "LogAnalyticsApi" {
application_id = data.azuread_application_published_app_ids.log.result.MicrosoftGraph
use_existing = false
owners = [data.azuread_client_config.current.object_id]
}
And also correct the same while giving Data.Read access to it in required_resource_access block
ex:
required_resource_access {
resource_app_id = data.azuread_application_published_app_ids.log.result.MicrosoftGraph
resource_access {
id = azuread_service_principal.LogAnalyticsApi.app_role_ids["Data.Read"]
type = "Role"
}
}
Reference: https://registry.terraform.io/providers/hashicorp/azuread/latest/docs/data-sources/application_published_app_ids
There is a Mapping issue, which I have identified and fixed the issue. Regarding the Log Analytic Grant permission,
My Log Analytic Resource Block:
data "azuread_application_published_app_ids" "log" {}
resource "azuread_service_principal" "LogAnalyticsApi" {
application_id = data.azuread_application_published_app_ids.log.result.LogAnalyticsAPI
use_existing = true
owners = [data.azuread_client_config.current.object_id]
}
required_resource_access {
resource_app_id = data.azuread_application_published_app_ids.log.result.LogAnalyticsAPI
resource_access {
id = azuread_service_principal.LogAnalyticsAPI.app_role_ids["Data.Read"]
type = "Role"
}
}
resource "azuread_app_role_assignment" "LogAnalytics-Read" {
app_role_id = azuread_service_principal.LogAnalyticsAPI.app_role_ids["Data.Read"]
principal_object_id = azuread_service_principal.appregsp.object_id
resource_object_id = azuread_service_principal.LogAnalyticsAPI.object_id
}
I have modified the code as Below and Log Analytic Api Permission I'm able to Grant the Log Analytic API Permission. You can check by calling the below resource blocks in your code.
data "azuread_application_published_app_ids" "log" {}
resource "azuread_service_principal" "LogAnalyticsApi" {
application_id = "ca7f3f0b-7d91-482c-8e09-c5d840d0eac5" #Data.Read
use_existing = true
owners = [data.azuread_client_config.current.object_id]
}
required_resource_access {
resource_app_id = "ca7f3f0b-7d91-482c-8e09-c5d840d0eac5"
resource_access {
id = azuread_service_principal.LogAnalyticsApi.app_role_ids["Data.Read"]
type = "Role"
}
}
resource "azuread_app_role_assignment" "LogAnalytics-Read" {
app_role_id = azuread_service_principal.LogAnalyticsApi.app_role_ids["Data.Read"]
principal_object_id = azuread_service_principal.appregsp.object_id
resource_object_id = azuread_service_principal.LogAnalyticsApi.object_id
}

Data bricks cluster is not getting created using terraform

I am data bricks cluster using terraform with below code.
resource "azurerm_resource_group" "myresourcegroup" {
name = "${var.applicationName}-${var.environment}-rg"
location = var.location
tags = {
environment = var.environment
}
}
resource "azurerm_databricks_workspace" "dbworkspace" {
name = "${var.applicationName}-${var.environment}-workspace"
resource_group_name = "${var.applicationName}-${var.environment}-rg"
location = var.location
sku = var.databricks_sku
custom_parameters {
no_public_ip = "true"
virtual_network_id = azurerm_virtual_network.vnet.id
public_subnet_name = azurerm_subnet.public_subnet.name
private_subnet_name = azurerm_subnet.private_subnet.name
public_subnet_network_security_group_association_id = azurerm_subnet.public_subnet.id
private_subnet_network_security_group_association_id = azurerm_subnet.private_subnet.id
}
depends_on = [azurerm_resource_group.myresourcegroup, azurerm_network_security_group.nsg, azurerm_virtual_network.vnet, azurerm_subnet.public_subnet, azurerm_subnet.private_subnet, azurerm_subnet_network_security_group_association.public-sn-nsg-assoc, azurerm_subnet_network_security_group_association.private-sn-nsg-assoc]
}
# Databricks Cluster
resource "databricks_cluster" "dbcluster" {
cluster_name = "${var.applicationName}-${var.environment}-cluster"
spark_version = "10.4.x-scala2.12"
node_type_id = "Standard_DS3_v2"
autotermination_minutes = 10
enable_local_disk_encryption = true
is_pinned = "true"
autoscale {
min_workers = 1
max_workers = 8
}
# spark_conf = {
# "spark.databricks.delta.optimizeWrite.enabled": true,
# "spark.databricks.delta.autoCompact.enabled": true,
# "spark.databricks.delta.preview.enabled": true,
# }
depends_on = [azurerm_resource_group.myresourcegroup, azurerm_network_security_group.nsg, azurerm_virtual_network.vnet, azurerm_subnet.public_subnet, azurerm_subnet.private_subnet, azurerm_subnet_network_security_group_association.public-sn-nsg-assoc, azurerm_subnet_network_security_group_association.private-sn-nsg-assoc, azurerm_databricks_workspace.dbworkspace]
}
My resource group and databricks workspace are creating fine but data bricks cluster is not getting created. When I see plan and apply I can see it is creating. I don't know what I am missing.

How to handle json files for terraform deployment

I am a new in terraform and using below terraform template to create Azure App service plan, App service and App insight together
# Configure the Azure provider
terraform {
required_providers {
azurerm = {
source = "hashicorp/azurerm"
version = "~> 2.98"
}
}
required_version = ">= 1.1.6"
}
provider "azurerm" {
features { }
}
resource "azurerm_application_insights" "appService-app_insights" {
name ="${var.prefix}-${var.App_Insights}"
location = var.Location
resource_group_name = var.ResourceGroup
application_type = "web" # Node.JS ,java
}
resource "azurerm_app_service" "appservice" {
name ="${var.prefix}-${var.appservice_name}"
location = var.Location
resource_group_name = var.ResourceGroup
app_service_plan_id = azurerm_app_service_plan.appserviceplan.id
https_only = true
site_config {
linux_fx_version = "NODE|10.14"
}
app_settings = {
# "SOME_KEY" = "some-value"
"APPINSIGHTS_INSTRUMENTATIONKEY" = azurerm_application_insights.appService-app_insights.instrumentation_key
}
depends_on = [
azurerm_app_service_plan.appserviceplan,
azurerm_application_insights.appService-app_insights
]
}
# create the AppService Plan for the App Service hosting our website
resource "azurerm_app_service_plan" "appserviceplan" {
name ="${var.prefix}-${var.app_service_plan_name}"
location = var.Location
resource_group_name = var.ResourceGroup
kind ="linux"
reserved = true
sku {
tier = "Standard" #
size = "S1"
}
}
I am generating a variable.tf file at runtime which is quite simple in this case
variable "ResourceGroup" {
default = "TerraRG"
}
variable "Location" {
default = "westeurope"
}
variable "app_service_plan_name" {
default = "terra-asp"
}
variable "appservice_name" {
default = "terra-app"
}
variable "prefix" {
default = "pre"
}
variable "App_Insights" {
default = "terra-ai"
}
Everything working good till here.
No I am trying to extend my infra and I want to go with multiple App + App Service Plan + App Insight which might look like below Json
{
"_comment": "Web App Config",
"webapps": [
{
"Appservice": "app1",
"Appserviceplan": "asp1",
"InstrumentationKey": "abc"
},
{
"Appservice": "app2",
"Appserviceplan": "asp2",
"InstrumentationKey": "def"
},
{
"Appservice": "app3",
"Appserviceplan": "asp2",
"InstrumentationKey": "def"
}
]
}
How can I target such a resource creation.
Should I think on creating App Service Plan First and App Insight and then should plan creating Apps. What could be a better approach for this scenario.
Since app1,app2,app3 are not globally unique i have tried with different name.
I have tried with app service name testapprahuluni12345,testapp12346and testapp12347.
main.tf
# Configure the Azure provider
terraform {
required_providers {
azurerm = {
source = "hashicorp/azurerm"
version = "~> 2.98"
}
}
}
provider "azurerm" {
features { }
}
resource "azurerm_application_insights" "appService-app_insights" {
name ="${var.prefix}-${var.App_Insights}"
location = var.Location
resource_group_name = var.ResourceGroup
application_type = "web" # Node.JS ,java
}
resource "azurerm_app_service_plan" "appserviceplan" {
count = length(var.app_service_plan_name)
name = var.app_service_plan_name[count.index]
location = var.Location
resource_group_name = var.ResourceGroup
kind ="linux"
reserved = true
sku {
tier = "Standard" #
size = "S1"
}
}
# create the AppService Plan for the App Service hosting our website
resource "azurerm_app_service" "appservice" {
count = length(var.app_names)
name = var.app_names[count.index]
location = var.Location
resource_group_name = var.ResourceGroup
app_service_plan_id = azurerm_app_service_plan.appserviceplan[count.index].id
https_only = true
site_config {
linux_fx_version = "NODE|10.14"
}
app_settings = {
# "SOME_KEY" = "some-value"
"APPINSIGHTS_INSTRUMENTATIONKEY" = azurerm_application_insights.appService-app_insights.instrumentation_key
}
depends_on = [
azurerm_app_service_plan.appserviceplan,
azurerm_application_insights.appService-app_insights
]
}
variable.tf
variable "ResourceGroup" {
default = "v-XXXXX--ree"
}
variable "Location" {
default = "West US 2"
}
/*variable "app_service_plan_name" {
default = "terra-asp"
}
variable "appservice_name" {
default = "terra-app"
}
*/
variable "prefix" {
default = "pre"
}
variable "App_Insights" {
default = "terra-ai"
}
variable "app_names" {
description = "App Service Names"
type = list(string)
default = ["testapprahuluni12345", "testapp12346", "testapp12347"]
}
variable "app_service_plan_name" {
description = "App Service Plan Name"
type = list(string)
default = ["asp1", "asp2", "asp2"]
}
OutPut--

Creating Azure Data Factory Linked Service with Terraform Creates Link in Live Mode

When I create a linked service in Azure Data Factory (ADF) for Databricks with terraform (using azurerm_data_factory_linked_service_azure_databricks) the linked service shows up only in live mode.
How can I make the linked service available in GIT mode where all the other ADF pipeline configurations are stored?
terraform {
required_providers {
azurerm = {
source = "hashicorp/azurerm"
version = "=2.97.0"
}
databricks = {
source = "databrickslabs/databricks"
}
}
}
provider "azurerm" {
features {}
}
provider "databricks" {
host = azurerm_databricks_workspace.this.workspace_url
}
data "azurerm_client_config" "this" {
}
resource "azurerm_data_factory" "this" {
name = "myadf-9182371362"
resource_group_name = "testrg"
location = "East US"
identity {
type = "SystemAssigned"
}
vsts_configuration {
account_name = "mydevopsorg"
branch_name = "main"
project_name = "adftest"
repository_name = "adftest"
root_folder = "/adf/"
tenant_id = data.azurerm_client_config.this.tenant_id
}
}
resource "azurerm_databricks_workspace" "this" {
name = "mydbworkspace"
resource_group_name = "testrg"
location = "East US"
sku = "standard"
}
data "databricks_node_type" "smallest" {
local_disk = true
depends_on = [
azurerm_databricks_workspace.this
]
}
data "databricks_spark_version" "latest_lts" {
long_term_support = true
depends_on = [
azurerm_databricks_workspace.this
]
}
resource "databricks_cluster" "this" {
cluster_name = "Single Node"
spark_version = data.databricks_spark_version.latest_lts.id
node_type_id = data.databricks_node_type.smallest.id
autotermination_minutes = 20
spark_conf = {
"spark.databricks.cluster.profile" : "singleNode"
"spark.master" : "local[*]"
}
depends_on = [
azurerm_databricks_workspace.this
]
custom_tags = {
"ResourceClass" = "SingleNode"
}
}
data "azurerm_resource_group" "this" {
name = "testrg"
}
resource "azurerm_role_assignment" "example" {
scope = data.azurerm_resource_group.this.id
role_definition_name = "Contributor"
principal_id = azurerm_data_factory.this.identity[0].principal_id
}
resource "azurerm_data_factory_linked_service_azure_databricks" "msi_linked" {
name = "ADBLinkedServiceViaMSI"
data_factory_id = azurerm_data_factory.this.id
resource_group_name = "testrg"
description = "ADB Linked Service via MSI"
adb_domain = "https://${azurerm_databricks_workspace.this.workspace_url}"
existing_cluster_id = databricks_cluster.this.id
msi_work_space_resource_id = azurerm_databricks_workspace.this.id
}
result in git mode
result in live mode

How do I update desired_count for existing ECS service with CODE_DEPLOY deployment controller?

When I update desired_count, the terraform planner shows that the operation will be an update in-place. However, when terraform tries to apply the changes, I get the following error:
Terraform v0.12.21
Initializing plugins and modules...
2020/03/05 22:10:52 [DEBUG] Using modified User-Agent: Terraform/0.12.21 TFC/8f5a579db5
module.web.aws_ecs_service.web[0]: Modifying... [id=arn:aws:ecs:us-east-1:55555:service/web/web]
Error: Error updating ECS Service (arn:aws:ecs:us-east-1:55555:service/web/web): InvalidParameterException: Unable to update network parameters on services with a CODE_DEPLOY deployment controller. Use AWS CodeDeploy to trigger a new deployment.
The terraform code used to reproduce this looks something like:
resource "aws_lb" "platform" {
name = "platform"
internal = false
load_balancer_type = "application"
ip_address_type = "ipv4"
security_groups = [aws_security_group.lb.id]
subnets = [for subnet in aws_subnet.lb : subnet.id]
enable_deletion_protection = true
tags = {
Name = "platform"
Type = "Public"
}
}
resource "aws_lb_target_group" "platform" {
count = 2
name = "platform-tg-${count.index + 1}"
vpc_id = var.vpc_id
protocol = "HTTP"
port = 80
target_type = "ip"
stickiness {
type = "lb_cookie"
enabled = false
}
health_check {
path = "/healthcheck"
port = var.container_port
protocol = "HTTP"
timeout = 5
healthy_threshold = 5
unhealthy_threshold = 3
matcher = "200"
}
tags = {
Name = "platform-tg-${count.index + 1}"
Type = "Public"
}
}
resource "aws_lb_listener" "platform-https" {
load_balancer_arn = aws_lb.platform.arn
port = 443
protocol = "HTTPS"
ssl_policy = "ELBSecurityPolicy-TLS-1-2-Ext-2018-06"
certificate_arn = var.certificate_arn
depends_on = [aws_lb_target_group.platform]
default_action {
type = "forward"
target_group_arn = aws_lb_target_group.platform[0].arn
}
lifecycle {
ignore_changes = [
default_action
]
}
}
locals {
family = "platform"
container_name = "web"
}
resource "aws_cloudwatch_log_group" "platform" {
name = "/aws/ecs/platform"
retention_in_days = 3653
tags = {
Name = "platform"
}
}
resource "aws_ecs_task_definition" "platform" {
family = local.family
requires_compatibilities = ["FARGATE"]
cpu = var.service.cpu
memory = var.service.memory
network_mode = "awsvpc"
execution_role_arn = aws_iam_role.ecs_task_execution.arn
task_role_arn = aws_iam_role.ecs_task_execution.arn
container_definitions = jsonencode(
jsondecode(
templatefile("${path.module}/taskdef.json", {
family = local.family
container_name = local.container_name
region = var.region
account_id = var.account_id
cpu = var.service.cpu
memory = var.service.memory
image = var.service.container_image
log_group = aws_cloudwatch_log_group.platform.name
node_env = var.node_env
port = var.container_port
platform_url = var.platform_url
short_url = var.short_url
cdn_url = var.cdn_url
})
).containerDefinitions
)
tags = {
Name = "platform"
Type = "Private"
}
}
resource "aws_ecs_cluster" "platform" {
name = "platform"
setting {
name = "containerInsights"
value = "enabled"
}
tags = {
Name = "platform"
Type = "Public"
}
}
data "aws_lb_listener" "current-platform" {
arn = aws_lb_listener.platform-https.arn
}
data "aws_ecs_task_definition" "current-platform" {
task_definition = local.family
}
resource "aws_ecs_service" "platform" {
count = var.delete_platform_ecs_service ? 0 : 1
name = "platform"
cluster = aws_ecs_cluster.platform.arn
launch_type = "FARGATE"
desired_count = var.service.container_count
enable_ecs_managed_tags = true
task_definition = "${aws_ecs_task_definition.platform.family}:${max(aws_ecs_task_definition.platform.revision, data.aws_ecs_task_definition.current-platform.revision)}"
depends_on = [aws_lb_target_group.platform]
load_balancer {
target_group_arn = data.aws_lb_listener.current-platform.default_action[0].target_group_arn
container_name = local.container_name
container_port = var.container_port
}
network_configuration {
subnets = sort([for subnet in aws_subnet.ecs : subnet.id])
security_groups = [aws_security_group.ecs.id]
}
deployment_controller {
type = "CODE_DEPLOY"
}
lifecycle {
// NOTE: Based on: https://docs.aws.amazon.com/cli/latest/reference/ecs/update-service.html
// If the network configuration, platform version, or task definition need to be updated, a new AWS CodeDeploy deployment should be created.
ignore_changes = [
load_balancer,
network_configuration,
task_definition
]
}
tags = {
Name = "platform"
Type = "Private"
}
}
This is using Terraform v0.12.21. Full debug output is available at: https://gist.github.com/jgeurts/f4d930608a119e9cd75a7a54b111ee7c
This is maybe not the best answer, but I wasn't able to get terraform to adjust only the desired_count. Instead, I added auto scaling to the ECS service:
Ignore desired_count:
resource "aws_ecs_service" "platform" {
...
lifecycle {
// NOTE: Based on: https://docs.aws.amazon.com/cli/latest/reference/ecs/update-service.html
// If the network configuration, platform version, or task definition need to be updated, a new AWS CodeDeploy deployment should be created.
ignore_changes = [
desired_count, # Preserve desired count when updating an autoscaled ECS Service
load_balancer,
network_configuration,
task_definition,
]
}
}
Add auto-scaling:
resource "aws_appautoscaling_target" "platform" {
max_capacity = var.max_capacity
min_capacity = var.min_capacity
resource_id = "service/${aws_ecs_cluster.platform.name}/${aws_ecs_cluster.platform.name}"
scalable_dimension = "ecs:service:DesiredCount"
service_namespace = "ecs"
depends_on = [
aws_ecs_cluster.platform,
]
}
resource "aws_appautoscaling_policy" "platform" {
name = "platform-auto-scale"
service_namespace = aws_appautoscaling_target.platform.service_namespace
resource_id = aws_appautoscaling_target.platform.resource_id
scalable_dimension = aws_appautoscaling_target.platform.scalable_dimension
policy_type = "TargetTrackingScaling"
target_tracking_scaling_policy_configuration {
target_value = var.service.autoscale_target_cpu_percentage
scale_out_cooldown = 60
scale_in_cooldown = 300
predefined_metric_specification {
predefined_metric_type = "ECSServiceAverageCPUUtilization"
}
}
}
resource "aws_appautoscaling_scheduled_action" "platform_0430_increase_min_capacity" {
name = "platform-0430-increase-min-capacity"
schedule = "cron(30 4 * * ? *)"
service_namespace = aws_appautoscaling_target.platform.service_namespace
resource_id = aws_appautoscaling_target.platform.resource_id
scalable_dimension = aws_appautoscaling_target.platform.scalable_dimension
scalable_target_action {
min_capacity = var.min_capacity + 4
max_capacity = var.max_capacity
}
}
resource "aws_appautoscaling_scheduled_action" "platform_0615_restore_min_capacity" {
name = "platform-0615-restore-min-capacity"
schedule = "cron(15 06 * * ? *)"
service_namespace = aws_appautoscaling_target.platform.service_namespace
resource_id = aws_appautoscaling_target.platform.resource_id
scalable_dimension = aws_appautoscaling_target.platform.scalable_dimension
scalable_target_action {
min_capacity = var.min_capacity
max_capacity = var.max_capacity
}
}
resource "aws_appautoscaling_scheduled_action" "platform_weekday_0945_increase_min_capacity" {
name = "platform-weekday-0945-increase-min-capacity"
schedule = "cron(45 9 ? * MON-FRI *)"
service_namespace = aws_appautoscaling_target.platform.service_namespace
resource_id = aws_appautoscaling_target.platform.resource_id
scalable_dimension = aws_appautoscaling_target.platform.scalable_dimension
scalable_target_action {
min_capacity = var.min_capacity + 4
max_capacity = var.max_capacity
}
}
resource "aws_appautoscaling_scheduled_action" "platform_weekday_2100_restore_min_capacity" {
name = "platform-weekday-2100-restore-min-capacity"
schedule = "cron(0 2100 ? * MON-FRI *)"
service_namespace = aws_appautoscaling_target.platform.service_namespace
resource_id = aws_appautoscaling_target.platform.resource_id
scalable_dimension = aws_appautoscaling_target.platform.scalable_dimension
scalable_target_action {
min_capacity = var.min_capacity
max_capacity = var.max_capacity
}
}

Resources