SparkSQL join data with Rest API data - apache-spark

I need to join a hive table with JSON data from a Rest endpoint. Is it better to use a UDF or a data source (like temp table)? If using a UDF, what'd be a good way to throttle RPS?

If you want need to look up the data in the Rest endpoint and spark you likely want to look at mapParitions. Here's a good explanation here of why it could be better to use that just using map (and a UDF). It would also speaks to throttling by implication. Each partition = 1 executor. So you can set a theoretical max using this. (I say theoretical max as you aren't always guaranteed to get all the executors you wish for.)

Related

What is the performance difference between stream.filter instead of CQL ALLOW FILTERING?

The data in my Cassandra DB table doesn't have much data right now.
However, since it is a table where data is continuously accumulated, I am interested in performance issues.
First of all, please don't think about the part where you need to redesign the table.
Think of it as a general RDBS date-based lookup. (startDate ~ endDate)
From Cassandra DB
Apply allow filtering and force the query.
This will get you exactly the data you want.
Query "all data" in Cassandra DB, This query only needs to be done once. (no where)
After that, only the data within the desired date is extracted through the stream().filter() function.
Which method would you choose?
In general, which one has more performance issues?
Summary: You need to do about 6 methods.
Execute allow filtering query 6 times / Not perform stream filter
Execute findAll query once / Execute stream filter 6 times
The challenge with both options is that neither will scale. It may work with very small data sets, say less than 1000 partitions, but you will quickly find that neither will work once your tables grow.
Cassandra is designed for real-time OLTP workloads where you are retrieving a single partition for real-time applications.
For analytics workloads, you should instead use Spark with the spark-cassandra-connector because it optimises analytics queries. Cheers!

How to speed up spark sql filter queries if the where clause is already fixed?

In my case, the data resides in spark tables which are created by calling createOrReplaceTempView API on a dataframe. Once the table is created, several queries are going to run on top of the table. Most of the time, the where query is going to be based on a particular column. The concerned columns' name is already known. I would like to know if some sort of optimizations can be done to improve the performance of the filter query.
I tried exploring the approach of indexing but it turns out spark does not support indexing a particular column.
Have you looked at the SPARK UI to see where most of your time is being consumed? Is it really the query where most of the time is spent? Usually reading the data from disk is where most of the time is spent. Learn to read the SPARK UI and find where the real bottleneck is. The SQL tab is a really great way to start figuring things out.
Here's some tricks to run faster in spark that apply to most jobs:
Can you reframe the problem? Was the data you are using in a format that helps you solve the query? Can you change how it's written to change the problem? (Could you start "pre-chewing" the data before you even query it to have it stored in the best format to help you solve the issue you want to solve?) Most performance gains come from changing the parameters of the problem to make them easier/faster to solve.
What format (is the incoming data) you are
storing the data in? Are you using Parquet/Orc? They have a great payoff disk space/compression that are worth using. They also can enable file level filter to speed read. Is their transformation work that you can push upstream to help make the query do less work? Can you be writing the data via a partition schema that would aid lookups?
How many files is your input? Can you consolidate files to maximize read throughput. Reading/listing a lot of small files as input slows down the processing of data.
If the tempView query is of similar size every time you could look at tweaking the partition count so that files are smaller but approximately the size of your HDFS block size. (Assuming you are using hdfs). HDFS you have to read an entire block weather you use all the data or not. Try and fit this to some multiple of your executors so that you are finishing together and not straggling. This is hard to get perfect but you can make decent strides to find a good ratio.
There is no need to optimize filter conditions with spark. spark already is smart enough to optimize its conditions post where query to fetch minimum rows first. The best I guess you can do is by persisting your TempView if querying the same view again and again.

Getting data OUT of Cassandra?

How can I export data, over a period of time (like hourly or daily) or updated records from a Cassandra database? It seems like using an index with a date field might work, but I definitely get timeouts in my cqlsh when I try that by hand, so I'm concerned that it's not reliable to do that.
If that's not the right way, then how do people get their data out of Cassandra and into a traditional database (for analysis, querying with JOINs, etc..)? It's not a java shop, so using Spark is non-trivial (and we don't want to change our whole system to use Spark instead of cassandra directly). Do I have to read sstables and try to keep track of them that way? Is there a way to say "get me all records affected after point in time X" or "get me all changes after timestamp X" or something similar?
It looks like Cassandra is really awesome at rapidly reading and writing individual records, but beyond that Cassandra seems to not be the right tool if you want to pull its data into anything else for analysis or warehousing or querying...
Spark is the most typical to do exactly that (as you say). It does it efficiently and is used often so pretty reliable. Cassandra is not really designed for OLAP workloads but things like spark connector help bridge the gap. DataStax Enterprise might have some more options available to you but I am not sure their current offerings.
You can still just query and page through the whole data set with normal CQL queries, its just not as fast. You can even use ALLOW FILTERING just be wary as its very expensive and can impact your cluster (creating a separate dc for the workload and using LOCOL_CL queries against it helps). You will probably also in that scenario add a < token() and > token() to the where clause to split up the query and prevent too much work on any one coordinator. Organizing your data so that this query is more efficient would be strongly recommended (ie if doing time slices, put things in a partition bucketed by time and clustering key timeuuids so its sequential read for each part of time).
Kinda cheesy sounding but the CSV dump from cqlsh is actually fast and might work for you if your data set is small enough.
I would not recommend going to the sstables directly unless you are familiar with internals and using hadoop or spark.

Can hbase-spark connector be used for sorting hbase rows by some column with good performance?

Well the the title of the questions says it all. I have a requirement which requires getting row keys corresponding to top X (say top 10) values in certain column. Thus, I need to sort hbase rows by the desired column values. I don't understand how should I do this or even is doable or not. It seems that hbase does not cater to this very well. Also it does not allow any such functionality out of the box.
Q1. Can I use hbase-spark connector, load whole hbase data in spark rdd and then perform sorting in it? Will this be fast? How the connector and spark will handle it? Will it fetch whole data on single node or multiple nodes and sort in distributed manner?
Q2. Also is there any better way to do this?
Q3. Is it undoable in hbase at all? and should I opt for different framework/technology altogether?
A3. If you need to sort your data by some column (not row-key), you get no benefit from using HBase. It'll be the same as reading raw files from hive/hdfs and sort, but slower.
A1. Sure you can use SHC or any other spark-hbase library for that matter, but A3 still holds. It will load the entire data on every region server as Spark RDD, only to shuffle it across your entire cluster.
A2. As any other programming/architecture issue, there are many possible solutions depending on your resources and requirements.
Will spark load all the data on single node and do sorting on single node or will it perform sorting on different nodes?
It depends on two factors:
How many regions your table has: This determines the parallelism degree (number of partitions) for reading from your table.
spark.sql.shuffle.partitions configuration value: After loading the data from the table, this value determines the parallelism degree for the sorting stage.
is there any better [library] than the SHC?
As for today there are multiple libraries for integrating Spark with HBase, each has its own pros and cons, and TMO none of them is fully mature or gives full coverage (compared Spark-Hive integration, for example). To get the best from Spark over HBase you should have a very good understanding of your use case and select the most suitable library.
Q2. Also is there any better way to do this?
If re-designing your HBase table is an option with this specific column value as part of the rowkey, this would allow fast access to these values as HBase is optimised for rowkey filters and not column filters.
You could then create a rowkey concatenation of the existing_rowkey + this_col_value. Querying it then with a Row Filter would have better performance results.

What is your approach for querying Cassandra with Spark (in R or Python)?

I am working with about a TB of data stored in Cassandra and trying to query it using Spark and R (could be Python).
My preference for querying the data would be to abstract the Cassandra table I'm querying from as a Spark RDD (using sparklyr and the spark-cassandra-connector with spark-sql) and simply doing an inner join on the column of interest (it is a partition key column). The company I'm working with says that this approach is a bad idea as it will translate into an IN clause in CQL and thus cause a big slow-down.
Instead I'm using their preferred method: write a closure that will extract the data for a single id in the partition key using a jdbc connection and then apply that closure 200k times for each id I'm interested in. I use spark_apply to apply that closure in parallel for each executor. I also set my spark.executor.cores to 1 so I get a lot of parellelization.
I'm having a lot of trouble with this approach and am wondering what the best practice is. Is it true that Spark SQL does not account for the slowdown associated with pulling multiple ids from a partition key column (IN operator)?
A few points here:
Working with Spark-SQL is not always the most performant option, the
optimized might not always as good of a job than a job you write
yourself
Check the logs carefully during your work, always check how your high-level queries are translated to CQL queries. In particular, make sure you avoid a full table scan if you can.
If you joining on the partition key, you should look into leveraging the methods: repartitionByCassandraReblica, and joinWithCassandraTable. Have a look at the official doc here: https://github.com/datastax/spark-cassandra-connector/blob/master/doc/2_loading.md and Tip4 of this blog post: https://www.instaclustr.com/cassandra-connector-for-spark-5-tips-for-success/
Finale note, it's quite common to have 2 Cassandra data center when using Spark. The first one serves regular read / write, the second one is used for running Spark. It's a separation of concern best practice (at the cost of an additional DC of course).
Hope it helps!

Resources