I am trying to build Guile 1.8.8 from source. I am stuck at the point where the build system is looking for libtool. I have installed it in a non-standard location.
I have already built Guile 2.0.11. In 2.0.11 build system, there is an explicit flag to configure --with-libltdl-prefix, which I think tells the build system where libtool is installed.
For Guile 1.8.8, I have Libtool installed in a non-standard location. How do I tell the build system where it is installed?
I am specifically getting error messages like:
libguile/Makefile.am:40: Libtool library used but `LIBTOOL' is undefined
libguile/Makefile.am:40: The usual way to define `LIBTOOL' is to add `LT_INIT'
I think in general this is a question regarding one or more of the autotools and how the build system finds programs / headers / libraries in non-standard locations.
This link is informative: How to point autoconf/automake to non-standard packages
Find the directory where *.m4 exists, which corresponds to libtool, or package which is in non-standard location.
export ACLOCAL_PATH=/path/to/m4/file
cd /path/to/configure.[in,ac]
autoreconf -if
./configure
I'm trying to build a portable version of gcc 4.8.2. (for only C/C++ languages) The end result is have gcc installed into a specific application directory, eg, /opt/gcc-4.8.2 so that I can copy that directory from one computer to another (all computers are either intel corei5 or corei7, running recent Linux versions, eg, Ubuntu 12, Suse 10/11, Centos 5 & 6).
So far I'm able to build gcc ok, using --prefix to have the gcc outputs placed in a single directory (which can then be later copied to the other hosts). I configured & built gcc's dependencies (gmp, mpfr, mpc, isl) to have --disable-shared, so I can be sure that the final gcc, when copied to other hosts, won't complain about missing libraries or symbols.
I have a question with cloog. I configured gcc with --with-cloog (to pick up my locally built cloog, which I built along with the other gcc dependencies). However, what I don't know, is whether I also need to copy the cloog libraries and binary to each host I copy gcc to?
Also, how can I test gcc & cloog interaction? Is there a simple C file example and/or gcc command line that can be used to test whether gcc is successfully making use of cloog?
Additionally, are there any other considerations when trying to build a gcc which I then want to run on other hosts?
It depends if cloog is installed as a shared library libcloog-isl.so.* or as a static one libcloog.a ; use
ldd $(gcc-4.8 -print-file-name=cc1)
to find out. Of course you need to install all the shared libraries dependencies. If libcloog*so appears in the output of above ldd command, it is a shared library. Otherwise a static one.
You could set the LD_LIBRARY_PATH, or add the directory containing libcloog-isl.so.* (e.g. /usr/local/lib/ or /opt/lib/ etc...) to /etc/ld.so.conf (then run ldconfig)
I am not entirely sure your gcc build can run on every platform you mentioned. There might be libc* dependencies. See this. And perhaps also binutils dependencies (notably for gcc-4.8 -flto compilations).
To test gcc just compile with optimizations (e.g. gcc-4.8 -Wall -O3) some non-trivial file.
I have connected FFTW library (http://www.fftw.org/)to a custom mentalray DLL that I have created in C++(A DLL file I have compiled on Linux (CENTOS) Using netbeans. I put this DLL in the software (Autodesk Maya) in a folder for adding custom plugins. The problem is I have installed FFTW on the computer and I dont know how to link Maya to the FFTW library. On windows I would put the FFTW dll in the folder that contains the maya.exe file that is the application Launch exe file.
Basically my question to a normal LINUX programer is if I install the FFTW libraries on linux and create a .dll for a software that links to it how do I get the software to link to the FFTW libraries?
let me know if you need me to provide anymore info..
You don't need to do anything special - so long as the FFTW libraries are at the expected location (/usr/local/lib) then you can just link to then as normal (gcc ... -lfftw3 ...).
Make sure to compile the right version: fftw floats (i.e., fftwf) versus fftw doubles. You should have a libfftw3f.3.so file, for example.
If you are using dlopen to call functions in fftw, place the .so file you generated somewhere in your $PATH.
If the mental ray "DLL" is a static library, you should configure fftw with --enable-static --disable-shared and run sudo make install.
If the mental ray "DLL" is a dynamic library, you should configure fftw with --disable-static --enable-shared and run sudo make install.
To be safe, you can do both.
sudo make install will place the fftw "DLLs" in the right place, as long as your mental ray "DLL" is using fftw conventionally (i.e., importing a fftw.h file).
Check for linker errors when you try to build your "DLL." If you see linker errors, you neglected to run sudo make install and your DLL won't work at all regardless of what you do with fftw.
I want to cross compile the Qt libraries (and eventually my application) for a Windows x86_64 target using a Linux x86_64 host machine. I feel like I am close, but I may have a fundamental misunderstanding of some parts of this process.
I began by installing all the mingw packages on my Fedora machine and then modifying the win32-g++ qmake.conf file to fit my environment. However, I seem to be getting stuck with some seemingly obvious configure options for Qt: -platform and -xplatform. Qt documentation says that -platform should be the host machine architecture (where you are compiling) and -xplatform should be the target platform for which you wish to deploy. In my case, I set -platform linux-g++-64 and -xplatform linux-win32-g++ where linux-win32-g++ is my modified win32-g++ configuration.
My problem is that, after executing configure with these options, I see that it invokes my system's compiler instead of the cross compiler (x86_64-w64-mingw32-gcc). If I omit the -xplatform option and set -platform to my target spec (linux-win32-g++), it invokes the cross compiler but then errors when it finds some Unix related functions aren't defined.
Here is some output from my latest attempt: http://pastebin.com/QCpKSNev.
Questions:
When cross-compiling something like Qt for Windows from a Linux host, should the native compiler ever be invoked? That is, during a cross compilation process, shouldn't we use only the cross compiler? I don't see why Qt's configure script tries to invoke my system's native compiler when I specify the -xplatform option.
If I'm using a mingw cross-compiler, when will I have to deal with a specs file? Spec files for GCC are still sort of a mystery to me, so I am wondering if some background here will help me.
In general, beyond specifying a cross compiler in my qmake.conf, what else might I need to consider?
Just use M cross environment (MXE). It takes the pain out of the whole process:
Get it:
$ git clone https://github.com/mxe/mxe.git
Install build dependencies
Build Qt for Windows, its dependencies, and the cross-build tools;
this will take about an hour on a fast machine with decent internet access;
the download is about 500MB:
$ cd mxe && make qt
Go to the directory of your app and add the cross-build tools to the PATH environment variable:
$ export PATH=<mxe root>/usr/bin:$PATH
Run the Qt Makefile generator tool then build:
$ <mxe root>/usr/i686-pc-mingw32/qt/bin/qmake && make
You should find the binary in the ./release directory:
$ wine release/foo.exe
Some notes:
Use the master branch of the MXE repository; it appears to get a lot more love from the development team.
The output is a 32-bit static binary, which will work well on 64-bit Windows.
(This is an update of #Tshepang's answer, as MXE has evolved since his answer)
Building Qt
Rather than using make qt to build Qt, you can use MXE_TARGETS to control your target machine and toolchain (32- or 64-bit). MXE started using .static and .shared as a part of the target name to show which type of lib you want to build.
# The following is the same as `make qt`, see explanation on default settings after the code block.
make qt MXE_TARGETS=i686-w64-mingw32.static # MinGW-w64, 32-bit, static libs
# Other targets you can use:
make qt MXE_TARGETS=x86_64-w64-mingw32.static # MinGW-w64, 64-bit, static libs
make qt MXE_TARGETS=i686-w64-mingw32.shared # MinGW-w64, 32-bit, shared libs
# You can even specify two targets, and they are built in one run:
# (And that's why it is MXE_TARGET**S**, not MXE_TARGET ;)
# MinGW-w64, both 32- and 64-bit, static libs
make qt MXE_TARGETS='i686-w64-mingw32.static x86_64-w64-mingw32.static'
In #Tshepang's original answer, he did not specify an MXE_TARGETS, and the default is used. At the time he wrote his answer, the default was i686-pc-mingw32, now it's i686-w64-mingw32.static. If you explicitly set MXE_TARGETS to i686-w64-mingw32, omitting .static, a warning is printed because this syntax is now deprecated. If you try to set the target to i686-pc-mingw32, it will show an error as MXE has removed support for MinGW.org (i.e. i686-pc-mingw32).
Running qmake
As we changed the MXE_TARGETS, the <mxe root>/usr/i686-pc-mingw32/qt/bin/qmake command will no longer work. Now, what you need to do is:
<mxe root>/usr/<TARGET>/qt/bin/qmake
If you didn't specify MXE_TARGETS, do this:
<mxe root>/usr/i686-w64-mingw32.static/qt/bin/qmake
Update: The new default is now i686-w64-mingw32.static
Another way to cross-compile software for Windows on Linux is the MinGW-w64 toolchain on Archlinux. It is easy to use and maintain, and it provides recent versions of the compiler and many libraries. I personally find it easier than MXE and it seems to adopt newer versions of libraries faster.
First, you will need an arch-based machine (virtual machine or docker container will suffice). It does not have to be Arch Linux, derivatives will do as well. I used Manjaro Linux.
Most of the MinGW-w64 packages are not available at the official Arch repositories, but there is plenty in AUR. The default package manager for Arch (Pacman) does not support installation directly from AUR, so you will need to install and use an AUR wrapper like yay or yaourt. Then installing MinGW-w64 version of Qt5 and Boost libraries is as easy as:
yay -Sy mingw-w64-qt5-base mingw-w64-boost
#yaourt -Sy mingw-w64-qt5-base mingw-w64-qt5-boost #if you use yaourt
This will also install the MinGW-w64 toolchain (mingw-w64-gcc) and other dependencies.
Cross-compiling a Qt project for windows (x64) is then as simple as:
x86_64-w64-mingw32-qmake-qt5
make
To deploy your program you will need to copy corresponding dlls from /usr/x86_64-w64-mingw32/bin/. For example, you will typically need to copy /usr/x86_64-w64-mingw32/lib/qt/plugins/platforms/qwindows.dll to program.exe_dir/platforms/qwindows.dll.
To get a 32bit version you simply need to use i686-w64-mingw32-qmake-qt5 instead. Cmake-based projects work just as easily with x86_64-w64-mingw32-cmake.
This approach worked extremely well for me, was the easiest to set-up, maintain, and extend.
It also goes well with continuous integration services. There are docker images available too.
For example, let's say I want to build QNapi subtitle downloader GUI. I could do it in two steps:
Start the docker container:
sudo docker run -it burningdaylight/mingw-arch:qt /bin/bash
Clone and compile QNapi
git clone --recursive 'https://github.com/QNapi/qnapi.git'
cd qnapi/
x86_64-w64-mingw32-qmake-qt5
make
That's it! In many cases, it will be that easy. Adding your own libraries to the package repository (AUR) is also straightforward. You would need to write a PKBUILD file, which is as intuitive as it can get, see mingw-w64-rapidjson, for example.
Ok I think I've got it figured out.
Based in part on https://github.com/mxe/mxe/blob/master/src/qt.mk and https://www.videolan.org/developers/vlc/contrib/src/qt4/rules.mak
It appears that "initially" when you run configure (with -xtarget, etc.), it configures then runs your "hosts" gcc to build the local binary file ./bin/qmake
./configure -xplatform win32-g++ -device-option CROSS_COMPILE=$cross_prefix_here -nomake examples ...
then you run normal "make" and it builds it for mingw
make
make install
so
yes
only if you need to use something other than msvcrt.dll (its default). Though I have never used anything else so I don't know for certain.
https://stackoverflow.com/a/18792925/32453 lists some configure params.
In order to compile Qt, one must run it's configure script, specifying the host platform with -platform (e.g. -platform linux-g++-64 if you're building on a 64-bit linux with the g++ compiler) and the target platform with -xplatform (e.g. -xplatform win32-g++ if you're cross compiling to windows).
I've also added this flag:
-device-option CROSS_COMPILE=/usr/bin/x86_64-w64-mingw32-
which specifies the prefix of the toolchain I'm using, which will get prepended to 'gcc' or 'g++' in all the makefiles that are building binaries for windows.
Finally, you might get problems while building icd, which apparently is something that is used to add ActiveX support to Qt. You can avoid that by passing the flag -skip qtactiveqt to the configure script. I've got this one out of this bug report: https://bugreports.qt.io/browse/QTBUG-38223
Here's the whole configure command I've used:
cd qt_source_directory
mkdir my_build
cd my_build
../configure \
-release \
-opensource \
-no-compile-examples \
-platform linux-g++-64 \
-xplatform win32-g++ \
-device-option CROSS_COMPILE=/usr/bin/x86_64-w64-mingw32- \
-skip qtactiveqt \
-v
As for yout questions:
1 - Yes. The native compiler will be called in order to build some tools that are needed in the build process. Maybe things like qconfig or qmake, but I'm not entirely sure which tools, exactly.
2 - Sorry. I have no idea what specs files are in the context of compilers =/ . But as far as I know, you wouldn't have to deal with that.
3 - You can specify the cross compiler prefix in the configure command line instead of doing it in the qmake.conf file, as mentioned above. And there's also that problem with idc, whose workaround I've mentioned as well.
I'm trying to build freetype2.
I'm using fedora 17 under x64 architecture.
When i invoke make command in freetype source directory, only libfreetype.la (along with some object files) is produced.
Why I'm missing libfreetype.a ?
On Ubuntu 11.10 and 32-bit architecture, I've compiled the same and got libfreetype.a. Is there any special procedure in x64 architectre?
Just to be safe, delete the entire folder and uncompress the package so we know you are dealing with the original files. Then do the following:
./configure --enable-static
make
This will produce the static library.
To specifically answer your last question: just yesterday I successfully compiled Freetype2 (git master, head revision) under MSYS for x86_64-w64-mingw32 with both --enable-static and --enable-shared, and it produced the static libfreetype.a just fine. I didn't do anything special, so apparently no special procedure is needed.
If you didn't specify --enable-static it should still be set to YES by default in recent versions of Freetype's configure script. The problem must somehow be on your end. If you haven't managed to solve it by now, I suggest you do as Dustin Juliano recommended.