How to deploy a portable gcc with cloog? - linux

I'm trying to build a portable version of gcc 4.8.2. (for only C/C++ languages) The end result is have gcc installed into a specific application directory, eg, /opt/gcc-4.8.2 so that I can copy that directory from one computer to another (all computers are either intel corei5 or corei7, running recent Linux versions, eg, Ubuntu 12, Suse 10/11, Centos 5 & 6).
So far I'm able to build gcc ok, using --prefix to have the gcc outputs placed in a single directory (which can then be later copied to the other hosts). I configured & built gcc's dependencies (gmp, mpfr, mpc, isl) to have --disable-shared, so I can be sure that the final gcc, when copied to other hosts, won't complain about missing libraries or symbols.
I have a question with cloog. I configured gcc with --with-cloog (to pick up my locally built cloog, which I built along with the other gcc dependencies). However, what I don't know, is whether I also need to copy the cloog libraries and binary to each host I copy gcc to?
Also, how can I test gcc & cloog interaction? Is there a simple C file example and/or gcc command line that can be used to test whether gcc is successfully making use of cloog?
Additionally, are there any other considerations when trying to build a gcc which I then want to run on other hosts?

It depends if cloog is installed as a shared library libcloog-isl.so.* or as a static one libcloog.a ; use
ldd $(gcc-4.8 -print-file-name=cc1)
to find out. Of course you need to install all the shared libraries dependencies. If libcloog*so appears in the output of above ldd command, it is a shared library. Otherwise a static one.
You could set the LD_LIBRARY_PATH, or add the directory containing libcloog-isl.so.* (e.g. /usr/local/lib/ or /opt/lib/ etc...) to /etc/ld.so.conf (then run ldconfig)
I am not entirely sure your gcc build can run on every platform you mentioned. There might be libc* dependencies. See this. And perhaps also binutils dependencies (notably for gcc-4.8 -flto compilations).
To test gcc just compile with optimizations (e.g. gcc-4.8 -Wall -O3) some non-trivial file.

Related

Can't find gmp or mpfr library after installation of gcc

I installed gcc-9.3.0 in linux following the simple steps in https://gcc.gnu.org/wiki/InstallingGCC
The installation was successful. I thought this process would install gmp and mpfr along the way. But I cannot find the gmp or mpfr libraries.
Should I install them when I do ./configure?
There are two different ways you can provide GCC with prerequisite
external host libraries like GMP and
MPFR:
Before configuring, run ./contrib/download_prerequisites from the
toplevel GCC source directory. It will download the sources from the
respective project repositories. That's all you have to do; GCC will
configure and build these libraries before running configure for itself
or its target libraries.
configure with --with-gmp etc. to point to the place where the
respective host library had been installed.
Either approach has its ups and down:
The first approach needs internet connection and build times go up.
However the increase of build time is negligible to the build time
needed for the rest of the compiler and its target libraries.
On the other hand, you will get the right version and build options of
either host lib as preferred by GCC, irrespective of which lib version
might already have been installed on the host. And this configuration
is much more convenient and self-contained when you are cross-compiling
GCC (because it's about host libraries, and you thus have to install
the prerequisite libraries on the host; installing it on build is
pointless). And it's more robust / self-contained if you are
distributing the built compiler: If the intended host does not have GMP
etc installed, then you'll have additional work to do on that host.
The second approach is more complicated because you have to build /
install the prerequisites on the host; correct version, correct
configure flags etc.
On the other hand, you only have to build the prerequisites once for
each host.
When you are configuring / rebuilding the compiler more than once, for
example when you are doing GCC development, then it's a bit faster cycle.
In the first case, the lib versions are independent of the host versions
of the libraries; GCC will actually not care whether the libs are
present on the host because it is using it's own "copy". The libraries
will be linked statically into the executable, hence you won't find them
anywhere (Maybe GCC has the option to do shared in-tree builds for the
libs, I don't know).
I am very much preferring the 1st approach because it is self-contained
and easier, in particular because I am frequently building GCC as
canadian cross, i.e. build ≠ host ≠ target ≠ build.

Header files are not found by GCC

Working with embedded C-projects. There are libraries, include files and so on - for micro controllers. No need for me to use GCC for a host machine and OS (Linux Mint 64 bit). As a rule...
But now I'm trying to compile mspdebug project from a Github - with a GCC of course. And I get an error at the very begin of make:
mspdebug$ make
cc -DUSE_READLINE -O1 -Wall -Wno-char-subscripts -ggdb -I. -Isimio -Iformats -Itransport -Idrivers -Iutil -Iui -DLIB_DIR=\"/usr/local/lib/\" -o util/btree.o -c util/btree.c
util/btree.c:19:20: fatal error: assert.h: No such file or directory
#include <assert.h>
^
compilation terminated.
I search for the includes in all possible paths (I've got the list of them via gcc -v command) - there are no assert.h file, as well, as stdio.h and so on. Except virtual box directories there is only one place (where GCC does not search includes): /usr/lib/syslinux/com32/include
AFAIK, all standard libs and includes are installed with the GCC. So I try to reinstall GCC (4.8.4) - nothing changes.
What is the normal way to give GCC all standard environment it needs?
Thanks to the right direction set by Sam Varshavchik I found the info in the stackoverflow. So I did the following:
1) installed build-essential:
sudo apt-get install build-essential
2) installed libusb (since my try to build the package revealed the absence of usb.h):
sudo apt-get install libusb-dev
And it is OK! The mspdebug (v.023) is compiled and successfully tested!
So, Linux Mint 17.2 (at least) requires installing some libs to a GCC, the most basic is build-essential.
assert.h is not part of gcc, it's a part of glibc.
Most likely, your Linux distribution puts the system headers into a separate package that you need to install.
Fedora, for examples, puts the header files in the glibc-headers package. However, you can't be using Fedora, because Fedora's gcc package has a dependency on glibc-headers, to make sure that it gets pulled in.
Whatever Linux distribution you're using, you need to research which distribution package will install the system header files you need to build stuff with.

Cross compiling libSDL

I'm trying to cross-compile libSDL version 1.2 for a custom made, debian based Linux system. The toolchain I'm using is already configured properly so that I just run gcc/g++ on my the desired code and the resulting output is compatible with the target machine.
When I run ./configure --help in the libSDL source directory, I see that I can basically just set some environment variables to point to my cross-compiler.
However, I also see the following options:
System types:
--build=BUILD configure for building on BUILD [guessed]
--host=HOST cross-compile to build programs to run on HOST [BUILD]
I looked into the configure.in, build-scripts/config.sub, and build-scripts/config.guess files but couldn't really figure out how it works.
Are these options required? If not, is it a good idea to use them?
With autotools, --build is what you are building on and --host is what you want it to run on (there's also --target, but that's only important if what you're compiling is itself a compiler). Autotools will generally figure out --build on their own, so don't specify it if you don't have to (but look in /usr/lib/gcc to see what your compiler probably thinks --build should be)
So, eg, if you're building for i686 on x86_64, do
./configure --host=i686-linux-gnu
(And use the -m32 options in CFLAGS, etc., but it sounds like you already have that ready.)
Whereas if you're building for x86_64 on i686, do
./configure --host=x86_64-linux-gnu
(You can build for all kinds of crazy hosts: rs6000-ibm-aix, sparc-sun-solaris, mips-idt-ecoff, etc..., assuming you have the appropriate gcc cross-compilers installed...)
GNU's page on it is here:
http://www.gnu.org/software/automake/manual/html_node/Cross_002dCompilation.html

How do I compile and link a 32-bit Windows executable using mingw-w64

I am using Ubuntu 13.04 and installed mingw-w64 using apt-get install mingw-w64. I can compile and link a working 64-bit version of my program with the following command:
x86_64-w64-mingw32-g++ code.cpp -o app.exe
Which generates a 64-bit app.exe file.
What binary or command line flags do I use to generate a 32-bit version of app.exe?
That depends on which variant of toolchain you're currently using. Both DWARF and SEH variants (which come starting from GCC 4.8.0) are only single-target. You can see it yourself by inspecting the directory structure of their distributions, i.e. they contain only the libraries with either 64- or 32-bit addressing, but not both. On the other hand, plain old SJLJ distributions are indeed dual-target, and in order to build 32-bit target, just supply -m32 flag. If that doesn't work, then just build with i686-w64-mingw32-g++.
BONUS
By the way, the three corresponding dynamic-link libraries (DLLs) implementing each GCC exception model are
libgcc_s_dw2-1.dll (DWARF);
libgcc_s_seh-1.dll (SEH);
libgcc_s_sjlj-1.dll (SJLJ).
Hence, to find out what exception model does your current MinGW-w64 distribution exactly provide, you can either
inspect directory and file structure of MinGW-w64 installation in hope to locate one of those DLLs (typically in bin); or
build some real or test C++ code involving exception handling to force linkage with one of those DLLs and then see on which one of those DLLs does the built target depend (for example, can be seen with Dependency Walker on Windows); or
take brute force approach and compile some test code to assembly (instead of machine code) and look for presence of references like ___gxx_personality_v* (DWARF), ___gxx_personality_seh* (SEH), ___gxx_personality_sj* (SJLJ); see Obtaining current GCC exception model.

Installing gcc on linux without c compiler

How can I install gcc on a system that have not any c compiler?
this system is a linux base firewall and have not any c compiler.
I guess you a have an appliance running Linux and shell-access, but neither a package manager nor a compiler is installed.
So, you need to cross-compile gcc and the whole toolchain (at least binutils) - this is quite simple, because the ./configure scripts of gcc, binutils, gdb etc. support cross-compiling with the --target= option. So all you have to do is to find out the target architecure (uname helps) and then download, unpack the gcc sources on a linux-host and run ./configure --target=$YOUR_TARGET.
With this, you now can build a cross-compiler gcc - this still runs on your host, but produces binaries for your target (firewall appliances).
This may already be sufficient for you, a typical desktop PC is much faster than a typical appliance, so it may make sense to compile everything you need on the Desktop PC with the cross-compiler and cross-binutils.
But if you really wish to do so, you can now also use your cross-compiler to compile a gcc running on your target (set this as --host= option) and compiling for your target (set this as --target option).
You can find details about allowed host/targets and examples in the gcc documentation: http://gcc.gnu.org/install/specific.html.
It depends on the distribution, if it's based on debian or some other of the big ones you can install gcc through apt-get or similar tool.
If it's a more basic system you need to compile gcc yourself on another computer and copy it over. It will be easiest if you have another computer with the same architecture (i386, arm or x86_64 for example).
I think that you might want to compile it statically also, so that you don't have dependencies on external libraries.
How do you plan to get all the source code needed for GCC loaded onto your machine? Could you mount the ISO image onto this machine and install from there?
Since you are using Endian Firewall, see "Building a development box" at the following link:
http://alumnus.caltech.edu/~igormt/endian/tips.html
If it's a debian based distribution, you can use
sudo apt-get install gcc
Note: maybe you must change "gcc" by a specific version of the debian package.

Resources