read a text file from S3 into a Spark df : UsupportedOperationException - apache-spark

I am trying to read a text file from on-prem s3 compatible object storage using Spark and I am getting an error stating: UsupportedOperationException. I am unsure what this is pointing to and have tried to adjust code thinking maybe it was the spark.read command. I have tried read.text and read.csv both of which should work, but result in the same error. Full stack trace is below along with code:
Code being used:
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.appName("s3reader") \
.getOrCreate()\
sc = spark.sparkContext
sc._jsc.hadoopConfiguration().set("fs.s3a.path.style.access", "true")
sc._jsc.hadoopConfiguration().set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
sc._jsc.hadoopConfiguration().set("fs.s3a.access.key","xxxxxxxxxxxx")
sc._jsc.hadoopConfiguration().set("fs.s3a.secret.key", "xxxxxxxxxxxxxx")
sc._jsc.hadoopConfiguration().set("fs.s3a.connection.ssl.enabled", "true")
df = spark.read.text("https://s3a.us-east-1.xxxx.xxxx.xxxx.com/bronze/xxxxxxx/test.txt")
print(df)
Stack trace:
Traceback (most recent call last):
File "/home/cloud/sparks3test.py", line 19, in <module>
df = spark.read.text("https://s3a.us-east-1.tpavcps3ednrg1.vici.verizon.com/bronze/CoreMetrics/test.txt")
File "/usr/local/bin/spark-3.1.2-bin-hadoop3.2/python/lib/pyspark.zip/pyspark/sql/readwriter.py", line 516, in text
File "/usr/local/bin/spark-3.1.2-bin-hadoop3.2/python/lib/py4j-0.10.9-src.zip/py4j/java_gateway.py", line 1304, in __call__
File "/usr/local/bin/spark-3.1.2-bin-hadoop3.2/python/lib/pyspark.zip/pyspark/sql/utils.py", line 111, in deco
File "/usr/local/bin/spark-3.1.2-bin-hadoop3.2/python/lib/py4j-0.10.9-src.zip/py4j/protocol.py", line 326, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o31.text.
: java.lang.UnsupportedOperationException
at org.apache.hadoop.fs.http.AbstractHttpFileSystem.listStatus(AbstractHttpFileSystem.java:91)
at org.apache.hadoop.fs.http.HttpsFileSystem.listStatus(HttpsFileSystem.java:23)
at org.apache.spark.util.HadoopFSUtils$.listLeafFiles(HadoopFSUtils.scala:225)
at org.apache.spark.util.HadoopFSUtils$.$anonfun$parallelListLeafFilesInternal$1(HadoopFSUtils.scala:95)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at scala.collection.TraversableLike.map(TraversableLike.scala:238)
at scala.collection.TraversableLike.map$(TraversableLike.scala:231)
at scala.collection.AbstractTraversable.map(Traversable.scala:108)
at org.apache.spark.util.HadoopFSUtils$.parallelListLeafFilesInternal(HadoopFSUtils.scala:85)
at org.apache.spark.util.HadoopFSUtils$.parallelListLeafFiles(HadoopFSUtils.scala:69)
at org.apache.spark.sql.execution.datasources.InMemoryFileIndex$.bulkListLeafFiles(InMemoryFileIndex.scala:158)
at org.apache.spark.sql.execution.datasources.InMemoryFileIndex.listLeafFiles(InMemoryFileIndex.scala:131)
at org.apache.spark.sql.execution.datasources.InMemoryFileIndex.refresh0(InMemoryFileIndex.scala:94)
at org.apache.spark.sql.execution.datasources.InMemoryFileIndex.<init>(InMemoryFileIndex.scala:66)
at org.apache.spark.sql.execution.datasources.DataSource.createInMemoryFileIndex(DataSource.scala:581)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:417)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:325)
at org.apache.spark.sql.DataFrameReader.$anonfun$load$3(DataFrameReader.scala:307)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:307)
at org.apache.spark.sql.DataFrameReader.text(DataFrameReader.scala:944)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:566)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.base/java.lang.Thread.run(Thread.java:829)```

Try reading file from S3 like below.
s3a://bucket/bronze/xxxxxxx/test.txt

Related

Spark Dataframe write cassandra table column orders

I was able to read Cassandra tables. I created Cassandra table according to spark dataframe schema. But when I tried to write spark dataframe to Cassandra table. I got following error. Environment: pyspark 3.0.1 local shell, Cassandra 3.11.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/spark/python/pyspark/sql/readwriter.py", line 825, in save
self._jwrite.save()
File "/opt/spark/python/lib/py4j-0.10.9-src.zip/py4j/java_gateway.py", line 1305, in __call__
File "/opt/spark/python/pyspark/sql/utils.py", line 128, in deco
return f(*a, **kw)
File "/opt/spark/python/lib/py4j-0.10.9-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o62.save.
: com.datastax.spark.connector.datasource.CassandraCatalogException: Attempting to write to C* Table but missing
primary key columns: [logicalref]
at com.datastax.spark.connector.datasource.CassandraWriteBuilder.<init>(CassandraWriteBuilder.scala:44)
at com.datastax.spark.connector.datasource.CassandraTable.newWriteBuilder(CassandraTable.scala:69)
at org.apache.spark.sql.execution.datasources.v2.BatchWriteHelper.newWriteBuilder(WriteToDataSourceV2Exec.scala:346)
at org.apache.spark.sql.execution.datasources.v2.BatchWriteHelper.newWriteBuilder$(WriteToDataSourceV2Exec.scala:341)
at org.apache.spark.sql.execution.datasources.v2.AppendDataExec.newWriteBuilder(WriteToDataSourceV2Exec.scala:253)
at org.apache.spark.sql.execution.datasources.v2.AppendDataExec.run(WriteToDataSourceV2Exec.scala:259)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result$lzycompute(V2CommandExec.scala:39)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result(V2CommandExec.scala:39)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.doExecute(V2CommandExec.scala:54)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:175)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:213)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:210)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:171)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:122)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:121)
at org.apache.spark.sql.DataFrameWriter.$anonfun$runCommand$1(DataFrameWriter.scala:963)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:100)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:87)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:963)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:354)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
First I read emty cassandra table. I got columns. I select these columns and assigned another dataframe like
df = spark.read.format("org.apache.spark.sql.cassandra")...
df2 = df.select(*df.columns)
Then I was able to write
df2.write.format("org.apache.spark.sql.cassandra")....

How to use MariaDB Connector/J with Pyspark for JDBC?

I'm using Pyspark Spark 3.0.1 on Ubuntu 18.04 and want to export data to a MariaDB server using JDBC.
I'm specifying the Connector/J jar on the pyspark command line like this:
$ pyspark --jars /usr/share/java/mariadb-java-client.jar
However, when I to use the JDBC connection I get the following error:
>>> df1 = sc.parallelize([[1,2,3], [2,3,4]]).toDF(("a", "b", "c"))
>>> df1.write.format("jdbc") \
... .mode("overwrite") \
... .option("url", "jdbc:mariadb://localhost:3306/testDatabase?user=foo&password=bar") \
... .option("dbtable", "example") \
... .save()
Traceback (most recent call last):
File "<stdin>", line 4, in <module>
File "/opt/spark/python/pyspark/sql/readwriter.py", line 825, in save
self._jwrite.save()
File "/opt/spark/python/lib/py4j-0.10.9-src.zip/py4j/java_gateway.py", line 1305, in __call__
File "/opt/spark/python/pyspark/sql/utils.py", line 128, in deco
return f(*a, **kw)
File "/opt/spark/python/lib/py4j-0.10.9-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o60.save.
: java.sql.SQLException: No suitable driver
at java.sql.DriverManager.getDriver(DriverManager.java:315)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.$anonfun$driverClass$2(JDBCOptions.scala:105)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.<init>(JDBCOptions.scala:105)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcOptionsInWrite.<init>(JDBCOptions.scala:194)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcOptionsInWrite.<init>(JDBCOptions.scala:198)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:45)
at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:46)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:90)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:175)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:213)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:210)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:171)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:122)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:121)
at org.apache.spark.sql.DataFrameWriter.$anonfun$runCommand$1(DataFrameWriter.scala:963)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:100)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:87)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:963)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:415)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:399)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
>>>
Because of java.sql.SQLException: No suitable driver I assume I need some additional configuration for Connector/J to be invoked. I'm not seeing how to to it though. What's the trick?
You need to specifiy the mariadb driver class org.mariadb.jdbc.Driver using driver option when writing:
df1.write.format("jdbc") \
.mode("overwrite") \
.option("driver", "org.mariadb.jdbc.Driver") \
.option("url", "jdbc:mysql://localhost:3306/testDatabase?user=foo&password=bar") \
.option("dbtable", "example") \
.save()
See Usage in the docs.
For anyone still facing this error,
use mysql in url, not mariadb.
the jdbc url should be like jdbc:mysql:{host} ... in place of jdbc:mariadb:{host} ....

Logon denied error when loading data from Oracle to pyspark

Please note that I am new to pySpark, and feel free to let me know if I am missing any detail.
Running on Windows 10, with python3.7 installed
Command being used to run pyspark: pyspark --jars "C:\spark\spark-2.4.5-bin-hadoop2.7\jars\ojdbc6.jar"
Code that I am trying to execute in pyspark shell:
from pyspark import SparkConf, SparkContext
sqlctx = SQLContext(sc)
with open("new1", "r") as f:
query = f.read()
df = sqlctx.read.format("jdbc").options(url="jdbc:oracle:thin:#host:port:sid",
driver="oracle.jdbc.driver.OracleDriver", dbtable=query).load()
I am pretty sure, url is correct, window login that i'm using has access to database as it works fine with cx_Oracle and I can access DB using PL/SQL client.
Error:
File "<stdin>", line 1, in <module>
File "C:\spark\spark-2.4.5-bin-hadoop2.7\python\pyspark\sql\readwriter.py", line 172, in load
return self._df(self._jreader.load())
File "C:\spark\spark-2.4.5-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\java_gateway.py", line 1257, in __call__
File "C:\spark\spark-2.4.5-bin-hadoop2.7\python\pyspark\sql\utils.py", line 63, in deco
return f(*a, **kw)
File "C:\spark\spark-2.4.5-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o39.load.
: java.sql.SQLException: ORA-01017: invalid username/password; logon denied
at oracle.jdbc.driver.T4CTTIoer.processError(T4CTTIoer.java:447)
at oracle.jdbc.driver.T4CTTIoer.processError(T4CTTIoer.java:389)
at oracle.jdbc.driver.T4CTTIoer.processError(T4CTTIoer.java:382)
at oracle.jdbc.driver.T4CTTIfun.processError(T4CTTIfun.java:675)
at oracle.jdbc.driver.T4CTTIoauthenticate.processError(T4CTTIoauthenticate.java:448)
at oracle.jdbc.driver.T4CTTIfun.receive(T4CTTIfun.java:513)
at oracle.jdbc.driver.T4CTTIfun.doRPC(T4CTTIfun.java:227)
at oracle.jdbc.driver.T4CTTIoauthenticate.doOAUTH(T4CTTIoauthenticate.java:383)
at oracle.jdbc.driver.T4CTTIoauthenticate.doOAUTH(T4CTTIoauthenticate.java:776)
at oracle.jdbc.driver.T4CConnection.logon(T4CConnection.java:432)
at oracle.jdbc.driver.PhysicalConnection.<init>(PhysicalConnection.java:553)
at oracle.jdbc.driver.T4CConnection.<init>(T4CConnection.java:254)
at oracle.jdbc.driver.T4CDriverExtension.getConnection(T4CDriverExtension.java:32)
at oracle.jdbc.driver.OracleDriver.connect(OracleDriver.java:528)
at org.apache.spark.sql.execution.datasources.jdbc.DriverWrapper.connect(DriverWrapper.scala:45)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$createConnectionFactory$1.apply(JdbcUtils.scala:63)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$createConnectionFactory$1.apply(JdbcUtils.scala:54)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD$.resolveTable(JDBCRDD.scala:56)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCRelation$.getSchema(JDBCRelation.scala:210)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:35)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:318)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:223)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:211)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:167)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Unknown Source)
this is the example way to access oracle from spark, where you are using user and pwd seperately.
see read-data-from-oracle-database-with-apache-spark
myDF = spark.read \
.format("jdbc") \
.option("url", "jdbc:oracle:thin:username/password#//hostname:portnumber/SID") \
.option("dbtable", "hr.emp") \
.option("user", "db_user_name") \
.option("password", "password") \
.option("driver", "oracle.jdbc.driver.OracleDriver") \
.load()

pyspark MQTT structured streaming with apache bahir

I'm using spark 2.4 and I've run pyspark like this:
./bin/pyspark --packages org.apache.bahir:spark-sql-streaming-mqtt_2.11:2.3.2
pyspark runs successfully.
(But when I run spark-sql-streaming-mqtt_2.11:2.4.0-SNAPSHOT, got an error)
I'm trying to get data from a MQTT broker using structured streaming.
so, I've run this
>>> from pyspark.sql import SparkSession
>>> from pyspark.sql.functions import explode
>>> from pyspark.sql.functions import split
>>> spark = SparkSession \
... .builder \
... .appName("Test") \
... .getOrCreate()
>>> lines = spark.readStream\
... .format("org.apache.bahir.sql.streaming.mqtt.MQTTStreamSourceProvider")\
... .option("topic", "/sensor")\
... .option("brokerUrl", "tcp://localhost:1883")\
... .load()
the error shown:
2019-03-22 01:24:43 WARN MQTTUtils:51 - If `clientId` is not set, a random value is picked up.
Recovering from failure is not supported in such a case.
Traceback (most recent call last):
File "<stdin>", line 4, in <module>
File "/opt/spark/python/pyspark/sql/streaming.py", line 400, in load
return self._df(self._jreader.load())
File "/opt/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
File "/opt/spark/python/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/opt/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o43.load.
: MqttException (0)
at org.eclipse.paho.client.mqttv3.persist.MqttDefaultFilePersistence.checkIsOpen(MqttDefaultFilePersistence.java:130)
at org.eclipse.paho.client.mqttv3.persist.MqttDefaultFilePersistence.getFiles(MqttDefaultFilePersistence.java:247)
at org.eclipse.paho.client.mqttv3.persist.MqttDefaultFilePersistence.close(MqttDefaultFilePersistence.java:142)
at org.apache.bahir.sql.streaming.mqtt.MQTTStreamSource.stop(MQTTStreamSource.scala:228)
at org.apache.spark.sql.streaming.DataStreamReader.load(DataStreamReader.scala:190)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
I tried to stream MQTT data for a week. But I don't think there is a way to solve it and it is really desperate. Is there no way I can solve it?
Thank you.
Try to set the persistence option.
Example :
val lines = spark.readStream.format("datasource.mqtt.MQTTStreamSourceProvider")
.option("topic", topic)
.option("persistence","memory")
.option("brokerUrl",broker)
.option("cleanSession", "true")
.load()

pyspark to read data from sql server

I'm trying to read data from sql server using pyspark. Below mentioned code works fine when executed using following command (where i'm passing sqljdbc driver path) but it fails when i try to run it using PyCharm IDE(on windows).
spark-submit --driver-class-path C:\drivers\sqljdbc_6.0.8112.100_enu\sqljdbc_6.0\enu\jre8\sqljdbc42.jar ReadSQLServerData.py
How to include or set the driver path while running same code through PyCharm IDE?
Code:
from pyspark.sql import SQLContext, Row
from pyspark import SparkConf, SparkContext
conf = SparkConf().setAppName("ReadSQLServerData")
sc = SparkContext(conf=conf)
query = "(SELECT top 10 * from users) as users"
sqlctx = SQLContext(sc)
df = sqlctx.read.format("jdbc").options(url="jdbc:sqlserver://mssqlserver:1433;database=user_management;user=pyspark;password=pyspark", dbtable=query).load()
Exception:
Traceback (most recent call last):
File "H:/Mine/OneDrive/Python/PySpark01/ReadSQLServerData.py", line 9, in <module>
df = sqlctx.read.format("jdbc").options(url="jdbc:sqlserver://mssqlserver:1433;database=user_management;user=pyspark;password=pyspark", dbtable=query).load()
File "C:\spark\python\pyspark\sql\readwriter.py", line 155, in load
return self._df(self._jreader.load())
File "C:\spark\python\lib\py4j-0.10.4-src.zip\py4j\java_gateway.py", line 1133, in __call__
File "C:\spark\python\pyspark\sql\utils.py", line 63, in deco
return f(*a, **kw)
File "C:\spark\python\lib\py4j-0.10.4-src.zip\py4j\protocol.py", line 319, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o27.load.
: java.sql.SQLException: No suitable driver
at java.sql.DriverManager.getDriver(DriverManager.java:315)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions$$anonfun$7.apply(JDBCOptions.scala:84)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions$$anonfun$7.apply(JDBCOptions.scala:84)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.<init>(JDBCOptions.scala:83)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.<init>(JDBCOptions.scala:34)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:32)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:330)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:152)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:125)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Not sure if you figured this out but figured I could help others.
You have to set the driver-class-path and you can pass it in as a config option like below
spark = SparkSession \
.builder \
.appName("Python Spark SQL basic example") \
.config("spark.driver.extraClassPath","/Users/Desktop/drivers/sqljdbc42.jar") \
.getOrCreate()

Resources