Making PANDAS identify a PATTERN inside a value on a DF - python-3.x

I'm using Python 3.9 with Pandas and Numpy.
Every day I receive a df with orders from the company I work for. Each day, this df comes from a different country that I don't know the language, and this dataframes don't have a pattern. In this case, I don't know what's the column name nor the index.
I just know that the orders follows a patter: 3 numbers + 2 letters like 000AA, 149KL, 555EE etc.
I saw that with strings is possible, but with pandas I just found commands that needs the name of the column.
df.column_name.str.contains(pat=r'\d\d\d\w\w', regex=True)
If I can find the column that only have this pattern, I know what the orders column is.

I started with a synthetic data set
import pandas
df = pandas.DataFrame([{'a':3,'b':4,'c':'222BB','d':'2asf'},
{'a':2,'b':1,'c':'111AA','d':'942'}])
I then cycle through each column. If the datatype is object, then I test whether all the elements in the Series match the regex
for column_id in df.columns:
if df[column_id].dtype=='object':
if all(df[column_id].str.contains(pat=r'\d\d\d\w\w', regex=True)):
print("matching column:",column_id)

Related

How can I groupby rows by the columns in which they actually posses a data point?

I don't even know if groupby is the correct function to use for this. It's a bit hard to understand so Ill include a screenshot of my dataframe: screenshot
Basically, this dataframe has way too many columns because each column is specific to only one or a few rows. You can see in the screenshot that the first few columns are specific towards the first row and the last few columns are specific to the last row. I want to make it so that each row only has the columns that actually pertain to it. I've tried several methods of using groupby('equipment name') and several methods using dropna but none work in the way I need it to. I'm also open to separating it into multiple dataframes.
Any method is acceptable, this bug has been driving me crazy. It took me a while to get to this point because this started out as an unintelligible 10,000 line json. I'm pretty new to programming as well.
This is a very cool answer that could be one option - and it does use groupby so sorry for dismissing!!! This will group your data into DataFrames where each DataFrame has a unique group of columns, and any row which only contains values for those columns will be in that DataFrame. If your data are such that there are multiple groups of rows which share the exact same columns, this solution is ideal I think.
Just to note, though, if your null values are more randomly spread out throughout the dataset, or if one row in a group of rows is missing a single entry (compared to related rows), you will end up with more combinations of unique non-null columns, and then more output DataFrames.
There are also (in my opinion) nice ways to search a DataFrame, even if it is very sparse. You can check the non-null values for a row:
df.loc[index_name].dropna()
Or for an index number:
df.iloc[index_number].dropna()
You could further store these values, say in a dictionary (this is a dictionary of Series, but could be converted to DataFrame:
row_dict = {row : df.loc[row].dropna() for row in df.index}
I could imagine some scenarios where something based off these options is more helpful for searching. But that linked answer is slick, I would try that.
EDIT: Expanding on the answer above based on comments with OP.
The dictionary created in the linked post contain the DataFrames . Basically you can use this dictionary to do comparisons with the original source data. My only issue with that answer was that it may be hard to search the dictionary if the column names are janky (as it looks like in your data), so here's a slight modification:
for i, (name,df) in enumerate(df.groupby(df.isnull().dot(df.columns))):
d['df' + str(i)] = df.dropna(1)
Now the dictionary keys are "df#", and the values are the DataFrames. So if you wanted to inspect the content one DataFrame, you can call:
d['df1'].head()
#OR
print(d['df0'])
If you wanted to look at all the DataFrames, you could call
for df in d.values():
print(df.head()) #you can also pass an integer to head to show more rows than 5
Or if you wanted to save each DataFrame you could call:
for name in sorted(d.keys()):
d[name].to_csv('path/to/file/' + name + '.csv')
The point is, you've gotten to a data structure where you can look at the original data, separated into DataFrames without missing data. Joining these back into a single DataFrame would be redundant, as it would create a single DataFrame (equal to the original) or multiple with some amount of missing data.
I think it comes down to what you are looking for and how you need to search the data. You could rename the dictionary keys / output .CSV files based on the types of machinery inside, for example.
I thought your last comment might mean that objects of similar type might not share the same columns; say for example if not all "Exhaust Fans" have the same columns, they will end up in different DataFrames in the dictionary. This maybe the type of case where it might be easier to just look at individual rows, rather than grouping them into weird categories:
df_dict = {row : pd.DataFrame(df.loc[row].dropna()).transpose() for row in df.index}
You could again then save these DataFrames as CSV files or look at them one by one (or e.g. search for Exhaust Fans by seeing if "Exhaust" is in they key). You could also print them all at once:
import pandas as pd
import numpy as np
import natsort
#making some randomly sparse data
columns = ['Column ' + str(i+1) for i in range(10)]
index = ['Row ' + str(i+1) for i in range(100)]
df = pd.DataFrame(np.random.rand(100,10), columns=columns,index=index)
df[df<.7] = np.nan
#creating the dictionary where each key is a row name
df_dict = {row : pd.DataFrame(df.loc[row].dropna()).transpose() for row in df.index}
#printing all the output
for key in natsort.natsorted(df_dict.keys())[:5]: #using [:5] to limit output
print(df_dict[key], '\n')
Out[1]:
Column 1 Column 4 Column 7 Column 9 Column 10
Row 1 0.790282 0.710857 0.949141 0.82537 0.998411
Column 5 Column 8 Column 10
Row 2 0.941822 0.722561 0.796324
Column 2 Column 4 Column 5 Column 6
Row 3 0.8187 0.894869 0.997043 0.987833
Column 1 Column 7
Row 4 0.832628 0.8349
Column 1 Column 4 Column 6
Row 5 0.863212 0.811487 0.924363
Instead of printing, you could write the output to a text file; maybe that's the type of document that you could look at (and search) to compare to the input tables. Bute not that even though the printed data are tabular, they can't be made into a DataFrame without accepting that there will be missing data for rows which don't have entries for all columns.

Assigning np.nans to rows of a Pandas column using a query

I want to assign NaNs to the rows of a column in a Pandas dataframe when some conditions are met.
For a reproducible example here are some data:
'{"Price":{"1581292800000":21.6800003052,"1581379200000":21.6000003815,"1581465600000":21.6000003815,"1581552000000":21.6000003815,"1581638400000":22.1599998474,"1581984000000":21.9300003052,"1582070400000":22.0,"1582156800000":21.9300003052,"1582243200000":22.0200004578,"1582502400000":21.8899993896,"1582588800000":21.9699993134,"1582675200000":21.9599990845,"1582761600000":21.8500003815,"1582848000000":22.0300006866,"1583107200000":21.8600006104,"1583193600000":21.8199996948,"1583280000000":21.9699993134,"1583366400000":22.0100002289,"1583452800000":21.7399997711,"1583712000000":21.5100002289},"Target10":{"1581292800000":22.9500007629,"1581379200000":23.1000003815,"1581465600000":23.0300006866,"1581552000000":22.7999992371,"1581638400000":22.9599990845,"1581984000000":22.5799999237,"1582070400000":22.3799991608,"1582156800000":22.25,"1582243200000":22.4699993134,"1582502400000":22.2900009155,"1582588800000":22.3248996735,"1582675200000":null,"1582761600000":null,"1582848000000":null,"1583107200000":null,"1583193600000":null,"1583280000000":null,"1583366400000":null,"1583452800000":null,"1583712000000":null}}'
In this particular toy example, I want to assign NaNs to the column 'Price' when the column 'Target10' has NaNs. (in the general case the condition may be more complex)
This line of code achieves that specific objective:
toy_data.Price.where(toy_data.Target10.notnull(), toy_data.Target10)
However when I attempt to use a query and assign NaNs to the targeted column I fail:
toy_data.query('Target10.isnull()', engine = 'python').Price = np.nan
The above line leaves toy_data intact.
Why is that and how I should use query to replace values in particular rows?
One way to do it is -
import numpy as np
toy_data['Price'] = np.where(toy_data['Target10'].isna(), np.nan, toy_data['Price'])

How to fillna() all columns of a dataframe from a single row of another dataframe with identical structure

I have a train_df and a test_df, which come from the same original dataframe, but were split up in some proportion to form the training and test datasets, respectively.
Both train and test dataframes have identical structure:
A PeriodIndex with daily buckets
n number of columns that represent observed values in those time buckets e.g. Sales, Price, etc.
I now want to construct a yhat_df, which stores predicted values for each of the columns. In the "naive" case, yhat_df columns values are simply the last observed training dataset value.
So I go about constructing yhat_df as below:
import pandas as pd
yhat_df = pd.DataFrame().reindex_like(test_df)
yhat_df[train_df.columns[0]].fillna(train_df.tail(1).values[0][0], inplace=True)
yhat_df(train_df.columns[1]].fillna(train_df.tail(1).values[0][1], inplace=True)
This appears to work, and since I have only two columns, the extra typing is bearable.
I was wondering if there is simpler way, especially one that does not need me to go column by column.
I tried the following but that just populates the column values correctly where the PeriodIndex values match. It seems fillna() attempts to do a join() of sorts internally on the Index:
yhat_df.fillna(train_df.tail(1), inplace=True)
If I could figure out a way for fillna() to ignore index, maybe this would work?
you can use fillna with a dictionary to fill each column with a different value, so I think:
yhat_df = yhat_df.fillna(train_df.tail(1).to_dict('records')[0])
should work, but if I understand well what you do, then even directly create the dataframe with:
yhat_df = pd.DataFrame(train_df.tail(1).to_dict('records')[0],
index = test_df.index, columns = test_df.columns)

Error while selecting rows from pandas data frame

I have a pandas dataframe df with the column Name. I did:
for name in df['Name'].unique ():
X = df[df['Name'] == name]
print (X.head())
but then X contains all kinds of different Name, not an unique name I want.
What did I do wrong?
Thanks a lot
You probably don't want to overwrite X with every iteration of your loop and only keep the dataframe containing the last value of df['Name'].unique().
Depending on your data and goal, you might want to use groupby as jezrael suggests, or maybe do something like df[~df['Name'].duplicated()].

Python Pandas unique values

df = pd.DataFrame({"ID":['A','B','C','D','E','F'],
"IPaddress":['12.345.678.01','12.345.678.02','12.345.678.01','12.345.678.18','12.345.678.02','12.345.678.01'],
"score":[8,9,5,10,3,7]})
I'm using Python, and Pandas library. For those rows with duplicate IP addresses, I want to select only one row with highest score (score being from 0-10), and drop all duplicates.
I'm having a difficult time in turning this logic into a Python function.
Step 1: Using the groupby function of Pandas, split the df into groups of IPaddress.
df.groupby('IPaddress')
Result of this will create an groupby object. Once you check the type of this object, it will be the following: pandas.core.groupby.groupby.DataFrameGroupBy
Step 2: With the Pandas groupby object created from step1, using .idxmax() over the score, will return the Pandas series with maximum scores of each IPaddress
df.groupby('IPaddress').score.idxmax()
(Optional) Step 3: If you want to transform the above series to dataframe, you can do below:
df.loc[df.groupby('IPaddress').score.idxmax(),['IPaddress','score']]
Here, you are selecting all the rows with max scores, and showing the IPaddress, score columns.
Useful reference:
1. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.loc.html
https://pandas.pydata.org/pandas-docs/version/0.22/groupby.html
https://www.geeksforgeeks.org/python-pandas-dataframe-idxmax/

Resources