Weight function calculation for dynamic output - statistics

I am trying to prepare a weight function whose output should lie in (min_output_value, max_output_value) and the output depends on the difference of actual and target value of y, i.e. (y_actual, y_target).
The output value should tend towards the max_output_value if (y_actual - y_target) is more and if the difference is less, the output value should tend to min_output_value.
Any link pointing to the answers are also appreciated.

After some R&D, I came up with a solution, which as follows:
y_diff = absolute(y_target - y_actual)
denominator = (1 + exp(-(min_output_value/10)*y_diff ))
output = (max_output_value/ denominator)
This ensures that the output value always lies in the range [min_output_value, min_output_value]
Rounding is optional.

Related

Change the precision of torch.sigmoid?

I want my sigmoid to never print a solid 1 or 0, but to actually print the exact value
i tried using
torch.set_printoptions(precision=20)
but it didn't work. here's a sample output of the sigmoid function :
before sigmoid : tensor([[21.2955703735]])
after sigmoid : tensor([[1.]])
but i don't want it to print 1, i want it to print the exact number, how can i force this?
The difference between 1 and the exact value of sigmoid(21.2955703735) is on the order of 5e-10, which is significantly less than machine epsilon for float32 (which is about 1.19e-7). Therefore 1.0 is the best approximation that can be achieved with the default precision. You can cast your tensor to a float64 (AKA double precision) tensor to get a more precise estimate.
torch.set_printoptions(precision=20)
x = torch.tensor([21.2955703735])
result = torch.sigmoid(x.to(dtype=torch.float64))
print(result)
which results in
tensor([0.99999999943577644324], dtype=torch.float64)
Keep in mind that even with 64-bit floating point computation this is only accurate to about 6 digits past the last 9 (and will be even less precise for larger sigmoid inputs). A better way to represent numbers very close to one is to directly compute the difference between 1 and the value. In this case 1 - sigmoid(x) which is equivalent to 1 / (1 + exp(x)) or sigmoid(-x). For example,
x = torch.tensor([21.2955703735])
delta = torch.sigmoid(-x.to(dtype=torch.float64))
print(f'sigmoid({x.item()}) = 1 - {delta.item()}')
results in
sigmoid(21.295570373535156) = 1 - 5.642236648842976e-10
and is a more accurate representation of your desired result (though still not exact).

Which is the error of a value corresponding to the maximum of a function?

This is my problem:
The first input is the observed data of MUSE, which is an astronomical instrument provides cubes, i.e. an image for each wavelength with a certain range. This means that, taken all the wavelengths corresponding to the pixel i,j, I can extract the spectrum for this pixel. Since these images are observed, for each pixel I have an error.
The second input is a spectrum template, i.e. a model of a spectrum. This template is assumed to be without error. I map this spectra at various redshift (this means multiply the wavelenghts for a factor 1+z, where z belong to a certain range).
The core of my code is the cross-correlation between the cube, i.e. the spectra extracted from each pixel, and the template mapped at different redshift. The result is a cross-correlation function for each pixel for each z, let's call this computed function as f(z). Taking, for each pixel, the argmax of f(z), I get the best redshift.
This is a common and widely-used process, indeed, it actually works well.
My question:
Since my input, i.e. the MUSE cube, has an error, I have propagated this error through the cross-correlation, obtaining an error on f(z), i.e. each f_i has a error sigma_i. So, how can I compute the error on z_max, which is the value of z corresponding to the maximum of f?
Maybe a solution could be the implementation of bootstrap method: I can extract, within the error of f, a certain number of function, for each of them I computed the argamx, so i can have an idea about the scatter of z_max.
By the way, I'm using python (3.x) and tensorflow has been used to compute the cross-correlation function.
Thanks!
EDIT
Following #TF_Support suggestion I'm trying to add some code and some figures to better understand the problem. But, before this, maybe it's better a little of math.
With this expression I had computed the cross-correlation:
where S is the spectra, T is the template and N is the normalization coefficient. Since S has an error, I had propagated these errors through the previous relation founding:
where SST_k is the the sum of the template squared and sigma_ij is the error on on S_ij (actually, I should have written sigma_S_ij).
The follow function (implemented with tensorflow 2.1) makes the cross-correlation between one template and the spectra of batch pixels, and computes the error on the cross-correlation function:
#tf.function
def make_xcorr_err1(T, S, sigma_S):
sum_spectra_sq = tf.reduce_sum(tf.square(S), 1) #shape (batch,)
sum_template_sq = tf.reduce_sum(tf.square(T), 0) #shape (Nz, )
norm = tf.sqrt(tf.reshape(sum_spectra_sq, (-1,1))*tf.reshape(sum_template_sq, (1,-1))) #shape (batch, Nz)
xcorr = tf.matmul(S, T, transpose_a = False, transpose_b= False)/norm
foo1 = tf.matmul(sigma_S**2, T**2, transpose_a = False, transpose_b= False)/norm**2
foo2 = xcorr**2 * tf.reshape(sum_template_sq**2, (1,-1)) * tf.reshape(tf.reduce_sum((S*sigma_S)**2, 1), (-1,1))/norm**4
foo3 = - 2 * xcorr * tf.reshape(sum_template_sq, (1,-1)) * tf.matmul(S*(sigma_S)**2, T, transpose_a = False, transpose_b= False)/norm**3
sigma_xcorr = tf.sqrt(tf.maximum(foo1+foo2+foo3, 0.))
Maybe, in order to understand my problem, more important than code is an image representing an output. This is the cross-correlation function for a single pixel, in red the maximum value, let's call z_best, i.e. the best cross-correlated value. The figure also shows the 3 sigma errors (the grey limits are +3sigma -3sigma).
If i zoom-in near the peak, I get this:
As you can see the maximum (as any other value) oscillates within a certain range. I would like to find a way to map this fluctuations of maximum (or the fluctuations around the maximum, or the fluctuations of the whole function) to an error on the value corresponding the maximum, i.e. an error on z_best.

Circular Buffer: Selecting Range of Indices that Include the Wraparound Point

I think this question is best understood with an example. So here we go:
Imagine the following are defined:
parameter number_of_points_before_point_of_interest = 4;
logic [15:0] test_data = 16'b0000111100001111;
logic [3: 0] point_of_interest;
logic [7: 0] output_data;
if the value assigned to point_of_interest is 1 and the value to number_of_points_before_point_of_interest is 4. I want my output_data to be {test_data[E: F], test_data[5:0]} or 8'b00111100.
So in essence, I want to take 8 bits starting from (point_of_interest - number_of_points_before_point_of_interest) and ending at (point_of_interest
- number_of_points_before_point_of_interest + 7).
Since point_of_interest is a variable number, the following two indexing methods are invalid:
To make the code more concise: point_of_interest --> pot
number_of_points_before_point_of_interest --> num_pt_before_pot
buffer[pot - num_pt_before_pot: 4'hF] // Invalid since pot not constant
buffer[pot -: num_pt_before_pot] // Part-select doesn't work either
Note: Variability of pot is not an issue in the second case since starting point can be variable. Regardless, part-select does not provide the desirable results in this example.
Your help is very much appreciated. Thanks in advance
A simple trick you can do is replicate your test_data, then take a slice of it
output_data = {2{test_data}}[16+pot-before_pot-:2*before_pot];

Very large float in python

I'm trying to construct a neural network for the Mnist database. When computing the softmax function I receive an error to the same ends as "you can't store a float that size"
code is as follows:
def softmax(vector): # REQUIRES a unidimensional numpy array
adjustedVals = [0] * len(vector)
totalExp = np.exp(vector)
print("totalExp equals")
print(totalExp)
totalSum = totalExp.sum()
for i in range(len(vector)):
adjustedVals[i] = (np.exp(vector[i])) / totalSum
return adjustedVals # this throws back an error sometimes?!?!
After inspection, most recommend using the decimal module. However when I've messed around with the values being used in the command line with this module, that is:
from decimal import Decimal
import math
test = Decimal(math.exp(720))
I receive a similar error for any values which are math.exp(>709).
OverflowError: (34, 'Numerical result out of range')
My conclusion is that even decimal cannot handle this number. Does anyone know of another method I could use to represent these very large floats.
There is a technique which makes the softmax function more feasible computationally for a certain kind of value distribution in your vector. Namely, you can subtract the maximum value in the vector (let's call it x_max) from each of its elements. If you recall the softmax formula, such operation doesn't affect the outcome as it reduced to multiplication of the result by e^(x_max) / e^(x_max) = 1. This way the highest intermediate value you get is e^(x_max - x_max) = 1 so you avoid the overflow.
For additional explanation I recommend the following article: https://nolanbconaway.github.io/blog/2017/softmax-numpy
With a value above 709 the function 'math.exp' exceeds the floating point range and throws this overflow error.
If, instead of math.exp, you use numpy.exp for such large exponents you will see that it evaluates to the special value inf (infinity).
All this apart, I wonder why you would want to produce such a big number (not sure you are aware how big it is. Just to give you an idea, the number of atoms in the universe is estimated to be in the range of 10 to the power of 80. The number you are trying to produce is MUCH larger than that).

Scipy.integrate gives odd results; are there best practices?

I am still struggling with scipy.integrate.quad.
Sparing all the details, I have an integral to evaluate. The function is of the form of the integral of a product of functions in x, like so:
Z(k) = f(x) g(k/x) / abs(x)
I know for certain the range of integration is between tow positive numbers. Oddly, when I pick a wide range that I know must contain all values of x that are positive - like integrating from 1 to 10,000,000 - it intgrates fast and gives an answer which looks right. But when I fingure out the exact limits - which I know sice f(x) is zero over a lot of the real line - and use those, I get another answer that is different. They aren't very different, though I know the second is more accurate.
After much fiddling I got it to work OK, but then needed to add in an exopnentiation - I was at least getting a 'smooth' answer for the computed function of z. I had this working in an OK way before I added in the exponentiation (which is needed), but now the function that gets generated (z) becomes more and more oscillatory and peculiar.
Any idea what is happening here? I know this code comes from an old Fortran library, so there must be some known issues, but I can't find references.
Here is the core code:
def normal(x, mu, sigma) :
return (1.0/((2.0*3.14159*sigma**2)**0.5)*exp(-(x-
mu)**2/(2*sigma**2)))
def integrand(x, z, mu, sigma, f) :
return np.exp(normal(z/x, mu, sigma)) * getP(x, f._x, f._y) / abs(x)
for _z in range (int(z_min), int(z_max) + 1, 1000):
z.append(_z)
pResult = quad(integrand, lb, ub,
args=(float(_z), MU-SIGMA**2/2, SIGMA, X),
points = [100000.0],
epsabs = 1, epsrel = .01) # drop error estimate of tuple
p.append(pResult[0]) # drop error estimate of tuple
By the way, getP() returns a linearly interpolated, piecewise continuous,but non-smooth function to give the integrator values that smoothly fit between the discrete 'buckets' of the histogram.
As with many numerical methods, it can be very sensitive to asymptotes, zeros, etc. The only choice is to keep giving it 'hints' if it will accept them.

Resources