Gnuplot fit error - singular matrix in Givens() - gnuplot

So I want to fit a function with a dataset using gnuplot. In the file "cn20x2012", at the lines [1:300] I have this data:
1 -7.576723949519277e-06
2 4.738414366971162e-05
3 2.5908117324519247e-05
4 7.233786749999952e-06
5 4.94720225240387e-06
6 -1.857620375000113e-06
7 5.697280584855734e-06
8 -1.867760712716345e-05
9 6.64096591257211e-05
10 2.756199717307687e-05
11 4.7755705550480866e-05
12 6.590865376225963e-05
13 4.1522206877403805e-05
14 3.145294946394234e-05
15 5.9346948090625035e-05
16 5.405458204471163e-05
17 0.0001484469089218749
18 0.00011236895265264405
19 0.00010798644697620197
20 8.656723035552881e-05
21 0.00019917737876442313
22 0.00022625750686778835
23 0.00023183354141658626
24 0.0003373178915148073
25 0.00032313619574999994
26 0.0003451188893915866
27 0.0003303809005983172
28 0.0003534148565745192
29 0.00039690566743750015
30 0.0004182810016802884
31 0.00045198626877403865
32 0.00047311462195192373
33 0.0004962054400408655
34 0.0004969566757524037
35 0.0005561838221274039
36 0.0005353567324539659
37 0.00052834133201923
38 0.0005980226227637016
39 0.0005446277144831731
40 0.0005960780049278846
41 0.0006076488594567314
42 0.000710219997610289
43 0.0006714079307259616
44 0.0006990041531870184
45 0.000694646402266827
46 0.0006910307645889419
47 0.0007918124250492787
48 0.0007699669760728367
49 0.0007850042712259613
50 0.0007735240355776444
51 0.0008333605652980768
52 0.0007914544977620185
53 0.0008254284036610573
54 0.0008578590784536057
55 0.0008597165395913466
56 0.0009350752655120189
57 0.0009355867078822116
58 0.0009413161534519229
59 0.001003045837043269
60 0.0009530084342740383
61 0.000981287851927885
62 0.000986143934318509
63 0.00096895140692548
64 0.0010671633388319713
65 0.0010884129846995196
66 0.0010974424039567304
67 0.0011198829067163459
68 0.0010649422789374995
69 0.0010909547135769227
70 0.0010858300892451934
71 0.00114890178018774
72 0.0011503018930817308
73 0.0012209814370937495
74 0.001264080502711538
75 0.0012453762294132222
76 0.0012725116258625
77 0.0012649334953990384
78 0.0012195748153341352
79 0.0013151443892213466
80 0.0013003322635283651
81 0.0013099768888799042
82 0.0013227992394807694
83 0.0013325137669168274
84 0.001356943212587259
85 0.0014541924819278852
86 0.0014094004314177883
87 0.0014273633669975969
88 0.0014393176087403859
89 0.0014372794673365393
90 0.0015051545220959143
91 0.0015432813234807683
92 0.0015832276965293275
93 0.001540622433288461
94 0.0016007491118125
95 0.0016195978358533654
96 0.0016447077023067317
97 0.0016350138695504803
98 0.0017352804136629807
99 0.001731106189370192
100 0.0017407015898704323
101 0.0017367582300937506
102 0.0018164239404875008
103 0.0017829769448653838
104 0.0018303930988165871
105 0.0017893320000211548
106 0.0018727349292259614
107 0.0018745909637668267
108 0.0018425366172147846
109 0.0019053739892581727
110 0.0018849885474855762
111 0.0018689524590103368
112 0.0019431807910961535
113 0.001951890517350962
114 0.0019308973497776446
115 0.0019990349471177894
116 0.002009245176572116
117 0.0020004240575882213
118 0.002020795320423557
119 0.0020148423748725963
120 0.002070277553975961
121 0.002112121992170673
122 0.002081609846093749
123 0.0020899822853341346
124 0.002214996736841347
125 0.002210968677028846
126 0.002204230691923077
127 0.0022059340675168264
128 0.002244672249610577
129 0.002243725570633895
130 0.002198417606970913
131 0.002326686848007212
132 0.002298981945014423
133 0.002412905193465384
134 0.0023317473012668287
135 0.0023255737818221145
136 0.0024042900543605767
137 0.0023814333208341345
138 0.002414946342495192
139 0.002451134140336538
140 0.002435468088014424
141 0.002541540709086779
142 0.0024759180712812523
143 0.002562872725209133
144 0.002554363054353367
145 0.002525350243064904
146 0.0026228594448966342
147 0.002640361090600963
148 0.0026968734518557683
149 0.002687729582449518
150 0.0026799173813848555
151 0.002751626483175481
152 0.0026916526068317286
153 0.002682602742860577
154 0.0027658840884567304
155 0.0028385319315024035
156 0.002733288245524039
157 0.002805041072350961
158 0.002798724552451201
159 0.00284738398885577
160 0.002833892571264423
161 0.0028506943730673084
162 0.0028578405825413463
163 0.0028141271324870197
164 0.0029047532288887
165 0.002916689246838943
166 0.003006111659274039
167 0.0030388357088942325
168 0.0030117903270181707
169 0.003023639132084136
170 0.0030182642660336535
171 0.0029788478969250015
172 0.003086049268993511
173 0.0030530940010240377
174 0.00309287048297596
175 0.0030892688902187473
176 0.0032070964353437493
177 0.0031308958387163454
178 0.003262165689711538
179 0.0032348496648947093
180 0.003334092027257212
181 0.0032702121678230764
182 0.0032887867663149036
183 0.00333782536743269
184 0.0033132179587812513
185 0.003400563164048078
186 0.003322215536028365
187 0.0033691419445264436
188 0.00340692471343654
189 0.003370118822997599
190 0.003414042435545674
191 0.003460621729710913
192 0.003487680921019232
193 0.0034814484875360595
194 0.003528280852358173
195 0.0035260558732403864
196 0.0035947047098653846
197 0.003583761358336538
198 0.003589446784643749
199 0.0035488957604610572
200 0.0036106514596322115
201 0.003633161542855769
202 0.003596668943564904
203 0.003621647520017789
204 0.0037260161142259616
205 0.0036873544761057684
206 0.003693311409786057
207 0.0037485618958747594
208 0.0037277801700697126
209 0.003731768419286058
210 0.0037200943660144225
211 0.0037368698886754786
212 0.0038266932486634626
213 0.003786905602120193
214 0.0038484308669038464
215 0.003837662506102065
216 0.003877989966946875
217 0.0038711451977908673
218 0.0039796825709810125
219 0.003955763375971154
220 0.003983664920576924
221 0.004019112007471154
222 0.003996646585913461
223 0.004061509550884613
224 0.004015245551199519
225 0.004009779120920672
226 0.004148229009661058
227 0.0040645974335312505
228 0.0041522345293678545
229 0.004216267765944711
230 0.004191517977733654
231 0.004280319721466346
232 0.004210795761447114
233 0.004258393462563462
234 0.004267925011272355
235 0.00427713419340625
236 0.004323331966394231
237 0.004361159201735935
238 0.004351708975694715
239 0.004359997178644953
240 0.00437384325853894
241 0.004375188742463941
242 0.004424559629495192
243 0.004461955226487498
244 0.004489655863850963
245 0.0045503420149230756
246 0.0045185560829999975
247 0.004506067166336778
248 0.004585396025798076
249 0.004530840472406252
250 0.0045934151490120215
251 0.004602146584228363
252 0.004643262102497593
253 0.004707265035608172
254 0.004766505116052884
255 0.004744165929896635
256 0.0047756718030625015
257 0.004802170611427885
258 0.004896239463478368
259 0.0048845448341901425
260 0.004845213594302884
261 0.004915008781204327
262 0.004838528640802884
263 0.0048121374747617796
264 0.004895357859576925
265 0.0048793476575266816
266 0.004958465852682693
267 0.005007965180538941
268 0.0049839032653341345
269 0.005068383734646637
270 0.00498556504900495
271 0.005014623260019232
272 0.005066327855785335
273 0.0050290740743365375
274 0.005152934708140861
275 0.005174238921781968
276 0.005123581464772355
277 0.005155969777822114
278 0.005169396608004327
279 0.00516497090489663
280 0.005145110646115385
281 0.005209611399110575
282 0.005163211771749997
283 0.005181044847507209
284 0.005281641245183894
285 0.005323840847189907
286 0.005230924322329326
287 0.005256136984014422
288 0.005374876757439424
289 0.0053137727444009615
290 0.005468482116127402
291 0.005453857539401205
292 0.005417081656274039
293 0.005393994523838937
294 0.005506909240446873
295 0.005449365350307692
296 0.005551215606367787
297 0.005505932791992786
298 0.0055918512302572145
299 0.005663100163579326
300 0.0056382443690432705
When I do
f(x) = a/b*(1-exp(-b*x))
fit[1:300] f(x) "cn20x2012" using 1:2 via a,b
The curve fits perfectly. But when I try to fit the curve with
a/b*(1-exp(-b*x/(3e-26))
I get the error message. Note that I've only added a constant to the exponential part of the function.
What can I do to fit the function with the constant 3e-26?
I'm using gnuplot 5.2 patchlevel 8 on linux

Adding that constant makes the values of exp(-b*x/(3.e-26) so close to zero that the term (1-exp(-b*x/(3e-26)) differs from 1 by less than the precision available for IEEE double precision floating point numbers. So you are essentially fitting the function g(x) = a/b, which is a very poor fit to your data.
Since you already have a good fit using your original function f(x), perhaps you can explain what your goal is to change the function to something else? What question are you trying to answer?

Related

What type of SVG is this?

I'm attempting to reverse engineer an SVG animation in JavaScript to better understand the animation and I'm seeing the following SVG code representing an "Up" motion in JavaScript. However the SVG itself doesn't look like any typical SVG code I am used to using. Can you help identify how this SVG is structured? Or how I can adjust the follwing code so I can open it in an image editing software?
d 601 9aAaAaAnBkNnUaNaN"/D 18 10bAaAnAnBuXaN"/F 22 10W7AaAaBaEaGiAW-6NiNnXaNbUaNaNaN"/D 30 10bAaEuUnU"/D 114 10bAaAnAnBuXaN"/F 117 10W7AaAaBaBaAaGkAn0NkNnKaNaNaUaNaU"/D 125 10eAaGnAnUnUnU"/D 66 12eBnAnAnNnUaN"/F 70 12W6AaAaAbEaGkAn2NuKaNaUaNaNaNaN"/D 76 12gEuNnNnN"/D 593 12eBnAnAuKaN"/F 596 12eAaAeUbAnEbKeAnAbJnAiAxNxAkAnUaXnNbNaNaU"/D 604 13bEuK"/D 166 14eEnAkKaN"/D 608 14aAnN"/F 169 15eAeAaAaBaAaAnAnBn0NkNnNnKbNgNaU"/D 222 15aAbBaGxKnKaN"/D 175 16gEnAnUnNnN"/D 308 16aAaAaAaBuAnAnEaAaAaEnAuNnNuNnUnNaUbw-7bN"/D 314 16gAaGkNuX"/D 268 17eAaAaAaAaAaGnBnNuUuUaUiNaNaU"/D 501 17bAaAuAnAnKaN"/D 548 17eAnAnAnAnKaN"/F 552 17jEW-6AkNaNaNbN"/D 557 17gExK"/D 209 18bAaEeAaBnAuAeAW8NnNnKgGnBn1NkGaAuNnNnXaUnw-6aN"/F 216 18jAaEgAxEaAaAW-8NkNbNaUnNkUaAeK"/D 260 18eAaBnAuAnEaBnAnBeAaEnAkNnXnNnNnXaNbXaNaN"/D 364 18eAaBuNkNaN"/D 509 18bAaBnAaEnAeAaAaBnAaEnAxXaNuNuNW-8AnAuUaUaNbNW6AeKnNnUaN"/D 159 19bAaBaAaAeAa0UaNaNeGnAnAnAiNn3NnNnNnXaN"/F 213 19aAnN"/D 214 19bBkNaN"/D 356 19eAnAnAnAnBbNW9NeAaAbAaAaBaBnBkBxUnNaNeUaNnUuNW-9AkAnAnEaAeAaBnAkUkNnXaNaNaw-6aNaN"/D 460 19eAaBuAnNnK"/F 502 19W6BaAaEkNW-6AuAnUaUaNaNaN"/F 312 20gAgAnAnBnAaAaEaAaNaGuAkAW-7NuNnKaAbNaKnNnNnKaNaNbN"/F 358 20W8AbAaAkAW-9AuUaNaNaN"/D 403 20eBnBnNnK"/F 407 20jAbAaAaAaGnAkAW-8NnNnUaUaUaNaN"/D 412 20gEnNnNuN"/D 451 20gAnAnAnBnI"/F 455 20jBaAaEbNaNaGuAnAn1NnXaUaNaNaN"/D 551 20W6AeAaAaAaEnNuNuNW-9AuAnKaNaNeN"/F 557 20gAaBnNnNkN"/D 17 21jAW6NjAaAaBaw6nJnBnAxNnUnNaNbNaNaKnKnNnNW-8AuAnAnGaBbAaAbAnAuAuNnNnw-7nIaUaN"/D 113 21eAa0NeAaAaBaBnEuKnNuNW-7AuAnBnBnBaAaAeBnAnAxNnw-6nNnKaKaUaU"/F 263 21W8BnBbBnNuEbNaNbAaBnNuAnEaBnAW-9NaKnNkUaNaBeUnNnAnUnKaNbN"/D 320 21ew9uAnNnKnNnNaUaNaN"/F 511 21aAnN"/D 596 21gAgNjAbBaEaBnBnJnBuAuNnNnXaNbNbNbNnNnNnNnNkNW-8AuAuKaNeN"/D 65 22aAa2NeAaBaw6uUnUnNuNW-6AkAnAnAnBuw-6aUaN"/F 462 22bAuN"/D 462 23bAaAnAuK"/F 464 23aAnN"/F 512 23aEuNaU"/F 21 24W8AaAaEaEnAnAuAW-7NnNuUnXaNaNbN"/D 417 24aAaBaAnBnAiAW-9NuNnKaNaBaAaAW8NeNaX"/F 549 24W9AbAbAaBxAnBnAW-6NuNuUnKaNbN"/F 596 24W8AeAaAaAaAaAuAuAuAnExNuNuNnNnNnKnUbNbN"/F 71 25W6AbAaBaBaAnAnAnAkAiNkNnNnNnKaNaNaNeN"/F 119 25W7AbAaEaBnAuAnAkAxNkNnNnUaUaUaNbN"/D 265 25bAuN"/F 359 25W9AbBaAnBkAnAaBuAW-7NaUnNkNnKaNaNeN"/D 403 25aAnN"/D 449 25bGaAa1NaNbNaAbJnNuNW-6AW-8NnNnNnX"/D 269 26bAaAnAuK"/D 361 26bAuN"/D 365 26bAaAnAuK"/F 161 27a3AgGnBuAkAW-6NkNnNnXnNaN"/D 262 27aAaBkUaN"/D 357 27bAaBnAuUnNaN"/F 497 27aAnN"/F 211 28eAa1GnBnNnAkAxNkNnNaNnX"/F 500 28W8AbAbAnGkAW-6NuNnNnUnNbNaN"/D 592 28aEaAaAaAbEnAkNnNnw-8"/D 158 29eGaAuNuX"/D 272 29bAaAaAnAnAuNnKaN"/D 546 29aBbAbEnAuNnNnI"/D 559 29gJnAxNnUaUaN"/F 418 30aGuAkAW-8NuKW9NjN"/F 403 31aAnN"/F 460 31W6AbAuAuAxAiNuNnUW8N"/D 65 32aAaAaAeAnAnAuNuI"/D 81 32aGnBxNnUeNaNaN"/D 129 32aEnAnAxNnNeNaNbN"/D 177 32aw6uAuNnNnUeNbU"/F 275 32aAnN"/F 274 33aAnN"/D 222 34aBnAkUeN

How to use arbitrary selector in interchange in J lang?

Let's assume we have a vector and matrix like below:
r =: 100 + 5 5 $ i.25
r
100 101 102 103 104
105 106 107 108 109
110 111 112 113 114
115 116 117 118 119
120 121 122 123 124
v =: 100 + 5 $ i.5
v
100 101 102 103 104
Now I would like to have a way to interchange fragments as specified by selectors.
I know how I can exchange items:
(<0 _1) &C. v
104 101 102 103 100
here I interchanged element at index=0 and index=-1.
In case of matrix, the rows (items) are changed:
(<0 _1) &C. r
120 121 122 123 124
105 106 107 108 109
110 111 112 113 114
115 116 117 118 119
100 101 102 103 104
But what about if I want to specify two arbitrary selections. Example to what I am after:
sel1 =: (< (<0 1))
sel1 { v
100 101
sel2 =: (< (<2 3))
sel2 { v
102 103
sel1 sel2 INTERCHANGE v
102 103 100 101 104
And the same for matrix:
sel1 =: (< (<0 1),(<0 1))
sel1 { r
100 101
105 106
sel2 =: (< (<3 4),(<1 2))
sel2 { r
116 117
121 122
sel1 sel2 INTERCHANGE r
116 117 102 103 104
121 122 107 108 109
110 111 112 113 114
115 100 101 118 119
120 105 106 123 124
So my question would be how to define elegantly interchange that uses two selections?
I think that I would first create the two selections and then use Amend to swap them. May not be the most elegant or generalizable, but if you know the selections that you want to change and they are the same shape, it does work.
r
100 101 102 103 104
105 106 107 108 109
110 111 112 113 114
115 116 117 118 119
120 121 122 123 124
[rep=:((<3 4;1 2),(<0 1;0 1)) { r NB. rep is the selected replacement values
116 117
121 122
100 101
105 106
((<0 1;0 1),(<3 4;1 2)){ r NB. values that will be replaced (just a check that they are the same shape)
100 101
105 106
116 117
121 122
rep ((<0 1;0 1),(<3 4;1 2))} r NB. Select verb ({) changed to Amend adverb (})
116 117 102 103 104
121 122 107 108 109
110 111 112 113 114
115 100 101 118 119
120 105 106 123 124

Rescaling the plot of a tree with gnuplot

I am using the following code in gnuplot to draw a tree from different inputs.
### tree diagram with gnuplot
reset session
#ID Parent Name Colors shape
# put datablock into strings
IDs = Parents = Names = Colors = Shape = ""
set table $Dummy
plot "tmp.dat" u (IDs = IDs.strcol(1)." "): \
(Parents = Parents.strcol(2)." "): \
(Names = Names.strcol(3)." "): \
(Colors = Colors.strcol(4)." "): \
(Shape = Shape.strcol(5)." ") w table
unset table
# Top node has no parent ID "NaN"
Start(n) = int(sum [i=1:words(Parents)] (word(Parents,i) eq "NaN" ? int(word(IDs,i)) : 0))
# get list index by ID
ItemIdx(s,n) = n == n ? (tmp=NaN, sum [i=1:words(s)] ((word(s,i)) == n ? (tmp=i,0) : 0), tmp) : NaN
# get parent of ID n
Parent(n) = word(Parents,ItemIdx(IDs,n))
# get level of ID n, recursive function
Level(n) = n == n ? Parent(n)>0 ? Level(Parent(n))-1 : 0 : NaN
# get number of children of ID n
ChildCount(n) = int(sum [i=1:words(Parents)] (word(Parents,i)==n))
# Create child list of ID n
ChildList(n) = (Ch = " ", sum [i=1:words(IDs)] (word(Parents,i)==n ? (Ch = Ch.word(IDs,i)." ",1) : (Ch,0) ), Ch )
# m-th child of ID n
Child(n,m) = word(ChildList(n),m)
# List of leaves, recursive function
LeafList(n) = (LL="", ChildCount(n)==0 ? LL=LL.n." " : sum [i=1:ChildCount(n)]
(LL=LL.LeafList(Child(n,i)), 0),LL)
# create list of all leaves
LeafAll = LeafList(Start(0))
# get x-position of ID n, recursive function
XPos(n) = ChildCount(n) == 0 ? ItemIdx(LeafAll,n) : (sum [i=1:ChildCount(n)](XPos(Child(n,i))))/(ChildCount(n))
# create the tree datablock for plotting
set print $Tree
do for [j=1:words(IDs)] {
n = int(word(IDs,j))
print sprintf("% 3d % 7.2f % 4d % 5s % 8s", n, XPos(n), Level(n), word(Names,j), word(Colors,j))
}
set print
print $Tree
# get x and y distance from ID n to its parent
dx(n) = XPos(Parent(int(n))) - XPos(int(n))
dy(n) = Level(Parent(int(n))) - Level(int(n))
unset border
unset tics
set offsets 0.25, 0.25, 0.25, 0.25
array shape[words(IDs)] # pointtype 6 = circle, pointtype 4 = square
array color[words(IDs)]
do for [i=1:words(IDs)] {
color[i] = int(word(Colors,i))
shape[i] = int(word(Shape,i))
print sprintf("color[%2d] = %d",i,color[i])
}
plot $Tree u 2:3:(dx($1)):(dy($1)) w vec nohead ls -1 not,\
"" u 2:3:(shape[$1]+1):(color[$1]) w p pt variable ps 6 lc rgb variable not, \
"" u 2:3:(shape[$1]) w p pt variable ps 6 lw 1.5 lc rgb "black" not, \
"" u 2:3:4 w labels offset 0,0.1 center not
### end of code
for a small dataset like this one, the output works perfect
1 2.00 0 y_{45} 0xFE1034
2 1.00 -1 - 0x118C4B
3 2.99 -1 y_{37} 0xFE1034
4 2.00 -2 - 0xC6C1C1
5 3.98 -2 y_{13} 0xFE1034
6 3.00 -3 - 0x118C4B
7 4.97 -3 y_{14} 0xFE1034
8 4.00 -4 - 0x118C4B
9 5.94 -4 y_{20} 0xFE1034
10 5.00 -5 - 0xC6C1C1
11 6.88 -5 y_{27} 0xFE1034
12 6.00 -6 - 0xC6C1C1
13 7.75 -6 y_{41} 0xFE1034
14 7.00 -7 - 0xC6C1C1
15 8.50 -7 y_{54} 0xFE1034
16 8.00 -8 - 0xC6C1C1
17 9.00 -8 - 0xC6C1C1
But, for larger datasets the tree becomes cramped, the nodes overlap, and looks ugly.
Moreover, when there are more than a few hundred nodes like below, I get a stack overflow error and the plot does not appear. The error comes from this line
LeafAll = LeafList(Start(0))
Any help with this will be appreciated.
1 NaN y_{295} 0xFE1034 6
2 1 x_{0} 0x33B2FF 6
3 1 y_{1285} 0xFE1034 6
4 2 - 0xC6C1C1 8
5 2 - 0xC6C1C1 8
6 3 x_{3} 0x33B2FF 6
7 3 y_{18} 0xFE1034 6
8 6 - 0xC6C1C1 8
9 6 - 0xC6C1C1 8
10 7 x_{13} 0x33B2FF 6
11 7 y_{21} 0xFE1034 6
12 10 - 0xC6C1C1 8
13 10 - 0xC6C1C1 8
14 11 x_{10} 0x33B2FF 6
15 11 y_{50} 0xFE1034 6
16 14 - 0xC6C1C1 8
17 14 - 0xC6C1C1 8
18 15 - 0x118C4B 4
19 15 y_{62} 0xFE1034 6
20 19 - 0xC6C1C1 8
21 19 y_{48} 0xFE1034 6
22 21 x_{41} 0x33B2FF 6
23 21 y_{1839} 0xFE1034 6
24 22 - 0xC6C1C1 8
25 22 - 0xC6C1C1 8
26 23 - 0xC6C1C1 8
27 23 y_{44} 0xFE1034 6
28 27 x_{12} 0x33B2FF 6
29 27 y_{15} 0xFE1034 6
30 28 - 0xC6C1C1 8
31 28 - 0xC6C1C1 8
32 29 x_{58} 0x33B2FF 6
33 29 y_{127} 0xFE1034 6
34 32 - 0xC6C1C1 8
35 32 - 0xC6C1C1 8
36 33 - 0xC6C1C1 8
37 33 y_{60} 0xFE1034 6
38 37 - 0xC6C1C1 8
39 37 y_{1825} 0xFE1034 6
40 39 - 0xC6C1C1 8
41 39 y_{1878} 0xFE1034 6
42 41 - 0xC6C1C1 8
43 41 y_{33} 0xFE1034 6
44 43 - 0xC6C1C1 8
45 43 y_{3} 0xFE1034 6
46 45 - 0xC6C1C1 8
47 45 y_{1435} 0xFE1034 6
48 47 - 0xC6C1C1 8
49 47 y_{218} 0xFE1034 6
50 49 - 0xC6C1C1 8
51 49 y_{20} 0xFE1034 6
52 51 - 0xC6C1C1 8
53 51 y_{13} 0xFE1034 6
54 53 - 0xC6C1C1 8
55 53 y_{47} 0xFE1034 6
56 55 - 0xC6C1C1 8
57 55 y_{2321} 0xFE1034 6
58 57 - 0xC6C1C1 8
59 57 y_{28} 0xFE1034 6
60 59 - 0xC6C1C1 8
61 59 y_{52} 0xFE1034 6
62 61 - 0xC6C1C1 8
63 61 y_{2410} 0xFE1034 6
64 63 - 0xC6C1C1 8
65 63 y_{1751} 0xFE1034 6
66 65 - 0xC6C1C1 8
67 65 y_{186} 0xFE1034 6
68 67 - 0xC6C1C1 8
69 67 y_{1850} 0xFE1034 6
70 69 - 0xC6C1C1 8
71 69 y_{491} 0xFE1034 6
72 71 - 0xC6C1C1 8
73 71 y_{23} 0xFE1034 6
74 73 - 0xC6C1C1 8
75 73 y_{0} 0xFE1034 6
76 75 x_{52} 0x33B2FF 6
77 75 y_{1110} 0xFE1034 6
78 76 - 0xC6C1C1 8
79 76 - 0xC6C1C1 8
80 77 - 0xC6C1C1 8
81 77 y_{57} 0xFE1034 6
82 81 - 0xC6C1C1 8
83 81 y_{12} 0xFE1034 6
84 83 - 0xC6C1C1 8
85 83 y_{1269} 0xFE1034 6
86 85 - 0xC6C1C1 8
87 85 y_{1278} 0xFE1034 6
88 87 - 0x118C4B 4
89 87 y_{63} 0xFE1034 6
90 89 - 0xC6C1C1 8
91 89 y_{1338} 0xFE1034 6
92 91 - 0xC6C1C1 8
93 91 y_{1271} 0xFE1034 6
94 93 - 0xC6C1C1 8
95 93 y_{41} 0xFE1034 6
96 95 - 0xC6C1C1 8
97 95 y_{65} 0xFE1034 6
98 97 - 0x118C4B 4
99 97 y_{1630} 0xFE1034 6
100 99 - 0xC6C1C1 8
101 99 y_{2068} 0xFE1034 6
102 101 - 0xC6C1C1 8
103 101 y_{2532} 0xFE1034 6
104 103 - 0xC6C1C1 8
105 103 y_{1760} 0xFE1034 6
106 105 - 0xC6C1C1 8
107 105 y_{188} 0xFE1034 6
108 107 - 0xC6C1C1 8
109 107 y_{2405} 0xFE1034 6
110 109 - 0xC6C1C1 8
111 109 y_{1867} 0xFE1034 6
112 111 - 0xC6C1C1 8
113 111 y_{1482} 0xFE1034 6
114 113 - 0xC6C1C1 8
115 113 y_{79} 0xFE1034 6
116 115 - 0xC6C1C1 8
117 115 y_{11} 0xFE1034 6
118 117 - 0xC6C1C1 8
119 117 y_{5226} 0xFE1034 6
120 119 - 0xC6C1C1 8
121 119 y_{354} 0xFE1034 6
122 121 - 0xC6C1C1 8
123 121 y_{2748} 0xFE1034 6
124 123 - 0xC6C1C1 8
125 123 y_{27} 0xFE1034 6
126 125 - 0xC6C1C1 8
127 125 y_{426} 0xFE1034 6
128 127 - 0xC6C1C1 8
129 127 y_{12571} 0xFE1034 6
130 129 - 0xC6C1C1 8
131 129 y_{5089} 0xFE1034 6
132 131 - 0xC6C1C1 8
133 131 y_{2490} 0xFE1034 6
134 133 - 0xC6C1C1 8
135 133 y_{1752} 0xFE1034 6
136 135 - 0xC6C1C1 8
137 135 y_{1874} 0xFE1034 6
138 137 - 0xC6C1C1 8
139 137 y_{370} 0xFE1034 6
140 139 - 0xC6C1C1 8
141 139 y_{1453} 0xFE1034 6
142 141 - 0xC6C1C1 8
143 141 y_{2756} 0xFE1034 6
144 143 - 0xC6C1C1 8
145 143 y_{545} 0xFE1034 6
146 145 - 0xC6C1C1 8
147 145 y_{36} 0xFE1034 6
148 147 - 0xC6C1C1 8
149 147 y_{2409} 0xFE1034 6
150 149 - 0xC6C1C1 8
151 149 y_{96} 0xFE1034 6
152 151 - 0xC6C1C1 8
153 151 y_{82} 0xFE1034 6
154 153 - 0xC6C1C1 8
155 153 y_{1788} 0xFE1034 6
156 155 - 0xC6C1C1 8
157 155 y_{2812} 0xFE1034 6
158 157 - 0xC6C1C1 8
159 157 y_{10357} 0xFE1034 6
160 159 - 0xC6C1C1 8
161 159 y_{1801} 0xFE1034 6
162 161 - 0xC6C1C1 8
163 161 y_{55} 0xFE1034 6
164 163 - 0xC6C1C1 8
165 163 y_{2868} 0xFE1034 6
166 165 - 0xC6C1C1 8
167 165 y_{453} 0xFE1034 6
168 167 - 0xC6C1C1 8
169 167 y_{31} 0xFE1034 6
170 169 - 0xC6C1C1 8
171 169 y_{1281} 0xFE1034 6
172 171 - 0xC6C1C1 8
173 171 y_{17} 0xFE1034 6
174 173 - 0xC6C1C1 8
175 173 y_{1748} 0xFE1034 6
176 175 - 0xC6C1C1 8
177 175 y_{58} 0xFE1034 6
178 177 - 0xC6C1C1 8
179 177 y_{2420} 0xFE1034 6
180 179 - 0xC6C1C1 8
181 179 y_{7128} 0xFE1034 6
182 181 - 0xC6C1C1 8
183 181 y_{11164} 0xFE1034 6
184 183 - 0xC6C1C1 8
185 183 y_{1820} 0xFE1034 6
186 185 - 0xC6C1C1 8
187 185 y_{1713} 0xFE1034 6
188 187 - 0xC6C1C1 8
189 187 y_{387} 0xFE1034 6
190 189 - 0xC6C1C1 8
191 189 y_{5253} 0xFE1034 6
192 191 - 0xC6C1C1 8
193 191 y_{1699} 0xFE1034 6
194 193 - 0xC6C1C1 8
195 193 - 0xC6C1C1 8
The depth of gnuplot's evaluation stack is capped at at 250 to prevent run-away recursion. In order to increase that you would have to edit the source and recompile the program. If you really want to do that, the relevant definition is here:
[gnuplot-5.2.8/src] grep -n -A 3 -B 3 STACK_DEPTH eval.h
44-
45-#include <stdio.h> /* for FILE* */
46-
47:#define STACK_DEPTH 250 /* maximum size of the execution stack */
48-#define MAX_AT_LEN 150 /* max number of entries in action table */
49-
50-/* These are used by add_action() to index the subroutine list ft[] in eval.c */
I have not looked at your recursion algorithm very closely, but I would think it possible to re-order the evaluation so that the subtree information is computed bottom-up rather than top-down. In that direction it may become purely an iteration rather than a recursive descent.
On the other hand you also say that larger trees don't fit into a single plot. So another approach may be to split the tree at a depth that both fits on the page and doesn't exceed the stack depth. Then you restart the process over again for each node that was truncated, and mark that node with an arrow or annotation or other indication like "subtree continued in figure 1b". Here I have hand-mangled your large figure to show the idea

Why doesn't the seaborn plot show a confidence interval?

I am using sns.lineplot to show the confidence intervals in a plot.
sns.lineplot(x = threshold, y = mrl_array, err_style = 'band', ci=95)
plt.show()
I'm getting the following plot, which doesn't show the confidence interval:
What's the problem?
There is probably only a single observation per x value.
If there is only one observation per x value, then there is no confidence interval to plot.
Bootstrapping is performed per x value, but there needs to be more than one obsevation for this to take effect.
ci: Size of the confidence interval to draw when aggregating with an estimator. 'sd' means to draw the standard deviation of the data. Setting to None will skip bootstrapping.
Note the following examples from seaborn.lineplot.
This is also the case for sns.relplot with kind='line'.
The question specifies sns.lineplot, but this answer applies to any seaborn plot that displays a confidence interval, such as seaborn.barplot.
Data
import seaborn as sns
# load data
flights = sns.load_dataset("flights")
year month passengers
0 1949 Jan 112
1 1949 Feb 118
2 1949 Mar 132
3 1949 Apr 129
4 1949 May 121
# only May flights
may_flights = flights.query("month == 'May'")
year month passengers
4 1949 May 121
16 1950 May 125
28 1951 May 172
40 1952 May 183
52 1953 May 229
64 1954 May 234
76 1955 May 270
88 1956 May 318
100 1957 May 355
112 1958 May 363
124 1959 May 420
136 1960 May 472
# standard deviation for each year of May data
may_flights.set_index('year')[['passengers']].std(axis=1)
year
1949 NaN
1950 NaN
1951 NaN
1952 NaN
1953 NaN
1954 NaN
1955 NaN
1956 NaN
1957 NaN
1958 NaN
1959 NaN
1960 NaN
dtype: float64
# flight in wide format
flights_wide = flights.pivot("year", "month", "passengers")
month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
year
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432
# standard deviation for each year
flights_wide.std(axis=1)
year
1949 13.720147
1950 19.070841
1951 18.438267
1952 22.966379
1953 28.466887
1954 34.924486
1955 42.140458
1956 47.861780
1957 57.890898
1958 64.530472
1959 69.830097
1960 77.737125
dtype: float64
Plots
may_flights has one observation per year, so no CI is shown.
sns.lineplot(data=may_flights, x="year", y="passengers")
sns.barplot(data=may_flights, x='year', y='passengers')
flights_wide shows there are twelve observations for each year, so the CI shows when all of flights is plotted.
sns.lineplot(data=flights, x="year", y="passengers")
sns.barplot(data=flights, x='year', y='passengers')

Have one query regarding sum if formula

I am working in excel using SUMIF formula, my data is as follows:
Region Opr Qty Cost Combo(col B&A)
192 114 50 500 104192
192 104 453 548 104192
192 114 125 54654 114192
192 114 155 1545 114192
192 124 12 1553 124192
192 134 12222 1554545 134192
192 174 256 15478 174192
192 104 12 1555 104192
192 104 210 1156 104192
192 114 47 448953 114192
192 114 29 59479 114192
192 124 124 32451 124192
192 134 114 290240 134192
4192 10 210 115656 104192
4192 10 47 44896 104192
4192 11 29 12866 114192
4192 11 549 290240 114192
4192 12 124 59480 124192
4192 13 114 61343 134192
4192 17 310 45339 174192
4192 10 56 32451 104192
4192 10 103 82483 104192
4192 11 685 111380 114192
4192 11 646 201858 114192
4192 12 26 6489 124192
4192 13 87 44543 134192
If you see the last column it's giving same combination result but the operator and region are not always the same. I want to do SUMIF against Region which is throwing wrong values.
You can try SUMPRODUCT:
=SUMPRODUCT(((B2:B27&A2:A27)*1<>E2:E27)*1)
If the concatenation of column B to A is not equal to the Combo, count as 1, then add all the 1 together in SUMPRODUCT.
Change the range accordingly.
The *1 convert any text to number.

Resources