I looked through different implementations of BERT's Masked Language Model.
For pre-training there are two common versions:
Decoder would simply take the final embedding of the [MASK]ed token and pass it throught a linear layer (without any modifications):
class LMPrediction(nn.Module):
def __init__(self, hidden_size, vocab_size):
super().__init__()
self.decoder = nn.Linear(hidden_size, vocab_size, bias = False)
self.bias = nn.Parameter(torch.zeros(vocab_size))
self.decoder.bias = self.bias
def forward(self, x):
return self.decoder(x)
Some implementations would use the weights of the input embeddings as weights of the decoder-linear-layer:
class LMPrediction(nn.Module):
def __init__(self, hidden_size, vocab_size, embeddings):
super().__init__()
self.decoder = nn.Linear(hidden_size, vocab_size, bias = False)
self.bias = nn.Parameter(torch.zeros(vocab_size))
self.decoder.weight = embeddings.weight ## <- THIS LINE
self.decoder.bias = self.bias
def forward(self, x):
return self.decoder(x)
Which one is correct? Mostly, I see the first implementation. However, the second one makes sense as well - but I cannot find it mentioned in any papers (I would like to see if the second version is somehow superior to the first one)
For those who are interested, it is called weight tying or joint input-output embedding. There are two papers that argue for the benefit of this approach:
Beyond Weight Tying: Learning Joint Input-Output Embeddings for Neural Machine Translation
Using the Output Embedding to Improve Language Models
Related
I need to visualize the output of Vgg16 model which classify 14 different classes.
I load the trained model and I did replace the classifier layer with the identity() layer but it doesn't categorize the output.
Here is the snippet:
the number of samples here is 1000 images.
epoch = 800
PATH = 'vgg16_epoch{}.pth'.format(epoch)
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
model.classifier._modules['6'] = Identity()
model.eval()
logits_list = numpy.empty((0,4096))
targets = []
with torch.no_grad():
for step, (t_image, target, classess, image_path) in enumerate(test_loader):
t_image = t_image.cuda()
target = target.cuda()
target = target.data.cpu().numpy()
targets.append(target)
logits = model(t_image)
print(logits.shape)
logits = logits.data.cpu().numpy()
print(logits.shape)
logits_list = numpy.append(logits_list, logits, axis=0)
print(logits_list.shape)
tsne = TSNE(n_components=2, verbose=1, perplexity=10, n_iter=1000)
tsne_results = tsne.fit_transform(logits_list)
target_ids = range(len(targets))
plt.scatter(tsne_results[:,0],tsne_results[:,1],c = target_ids ,cmap=plt.cm.get_cmap("jet", 14))
plt.colorbar(ticks=range(14))
plt.legend()
plt.show()
here is what this script has been produced: I am not sure why I have all colors for each cluster!
The VGG16 outputs over 25k features to the classifier. I believe it's too much to t-SNE. It's a good idea to include a new nn.Linear layer to reduce this number. So, t-SNE may work better. In addition, I'd recommend you two different ways to get the features from the model:
The best way to get it regardless of the model is by using the register_forward_hook method. You may find a notebook here with an example.
If you don't want to use the register, I'd suggest this one. After loading your model, you may use the following class to extract the features:
class FeatNet (nn.Module):
def __init__(self, vgg):
super(FeatNet, self).__init__()
self.features = nn.Sequential(*list(vgg.children())[:-1]))
def forward(self, img):
return self.features(img)
Now, you just need to call FeatNet(img) to get the features.
To include the feature reducer, as I suggested before, you need to retrain your model doing something like:
class FeatNet (nn.Module):
def __init__(self, vgg):
super(FeatNet, self).__init__()
self.features = nn.Sequential(*list(vgg.children())[:-1]))
self.feat_reducer = nn.Sequential(
nn.Linear(25088, 1024),
nn.BatchNorm1d(1024),
nn.ReLU()
)
self.classifier = nn.Linear(1024, 14)
def forward(self, img):
x = self.features(img)
x_r = self.feat_reducer(x)
return self.classifier(x_r)
Then, you can run your model returning x_r, that is, the reduced features. As I told you, 25k features are too much for t-SNE. Another method to reduce this number is by using PCA instead of nn.Linear. In this case, you send the 25k features to PCA and then train t-SNE using the PCA's output. I prefer using nn.Linear, but you need to test to check which one you get a better result.
I just wanna to implement some trainable parameters in my model with Keras. In Pytorch, we can do it by using torch.nn.Parameter() like below:
self.a = nn.Parameter(torch.ones(8))
self.b = nn.Parameter(torch.zeros(16,8))
I think by doing this in pytorch it can add some trainable parameters into the model. And now I wanna to know, how to achieve similar operations in keras?
Any suggestions or advice are welcomed!
THX! :)
p.s. I just write a custom layer in Keras as below:
class Mylayer(Layer):
def __init__(self,input_dim,output_dim,**kwargs):
self.input_dim = input_dim
self.output_dim = output_dim
super(Mylayer,self).__init__(**kwargs)
def build(self):
self.kernel = self.add_weight(name='pi',
shape=(self.input_dim,self.output_dim),
initializer='zeros',
trainable=True)
self.kernel_2 = self.add_weight(name='mean',
shape=(self.input_dim,self.output_dim),
initializer='ones',
trainable=True)
super(Mylayer,self).build()
def call(self,x):
return x,self.kernel,self.kernel_2
and I wanna to know if I haven't change the tensor which pass through the layer, should I write the function def compute_output_shape() for necessary?
You need to create the trainable weights in a custom layer:
class MyLayer(Layer):
def __init__(self, my_args, **kwargs):
#do whatever you need with my_args
super(MyLayer, self).__init__(**kwargs)
#you create the weights in build:
def build(self, input_shape):
#use the input_shape to infer the necessary shapes for weights
#use self.whatever_you_registered_in_init to help you, like units, etc.
self.kernel = self.add_weight(name='kernel',
shape=the_shape_you_calculated,
initializer='uniform',
trainable=True)
#create as many weights as necessary for this layer
#build the layer - equivalent to self.built=True
super(MyLayer, self).build(input_shape)
#create the layer operation here
def call(self, inputs):
#do whatever operations are needed
#example:
return inputs * self.kernel #make sure the shapes are compatible
#tell keras about the output shape of your layer
def compute_output_shape(self, input_shape):
#calculate the output shape based on the input shape and your layer's rules
return calculated_output_shape
Now use your layer in the model.
If you are using eager execution on with tensorflow and creating a custom training loop, you can work pretty much the same way you do with PyTorch, and you can create weights outside layers with tf.Variable, passing them as parameters to the gradient calculation methods.
Standard interpretation: in the original RNN, the hidden state and output are calculated as
In other words, we obtain the the output from the hidden state.
According to Wiki, the RNN architecture can be unfolded like this:
And the code I have been using is like:
class Model(nn.Module):
def __init__(self, input_size, output_size, hidden_dim, n_layers):
super(Model, self).__init__()
self.hidden_dim = hidden_dim
self.rnn = nn.RNN(input_size, hidden_dim, 1)
self.fc = nn.Linear(hidden_dim, output_size)
def forward(self, x):
batch_size = x.size(0)
out, hidden = self.rnn(x)
# getting output from the hidden state
out = out..view(-1, self.hidden_dim)
out = self.fc(out)
return out, hidden
RNN as "pure" feed-forward layers: but today, I see another implementation from the Pytorch Tutorial
And their code is like
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
self.i2o = nn.Linear(input_size + hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input, hidden):
combined = torch.cat((input, hidden), 1)
hidden = self.i2h(combined)
output = self.i2o(combined)
output = self.softmax(output)
return output, hidden
def initHidden(self):
return torch.zeros(1, self.hidden_size)
The hidden layer calculation is same as the standard interpretation, but the output is is calculated independently from the current hidden state h.
To me, the math behind this implementation is:
So, this implementation is different from the original RNN implementation?
I have been using RNN for almost 1 year and I thought I understand it, not until today when I see this post from Pytorch. I am really confused now.
I want to specifically add the pretrained model parameters of some layers to my new network .
For Linear Layer i just did :
model_enc.linear_3d.weight = model_trained.linear_3d.weight
model_enc.linear_3d.bias = model_trained.linear_3d.bias
Will this suffice or are there any other parameters that I need to load or is there a easy way than this . My module is already trained and I just want to load params for few layers .
Thank you
Your solution should work and seems easy enough to me.
From the source code on https://pytorch.org/docs/master/_modules/torch/nn/modules/linear.html#Linear you can see that the nn.Linear module has the attributes in_features, out_features, weight1 and bias:
def __init__(self, in_features, out_features, bias=True):
super(Linear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
Therefore, as long as your in_features and out_features are identical you can just replace the weights and bias as you did.
Alternatively, you can replace the entire Linear module in in one network with the module of the other if you stored it as an attribute.
My code is as below:
class Mymodel(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers, batch_size):
super(Discriminator, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.num_layers = num_layers
self.batch_size = batch_size
self.lstm = nn.LSTM(input_size, hidden_size)
self.proj = nn.Linear(hidden_size, output_size)
self.hidden = self.init_hidden()
def init_hidden(self):
return (Variable(torch.zeros(self.num_layers, self.batch_size, self.hidden_size)),
Variable(torch.zeros(self.num_layers, self.batch_size, self.hidden_size)))
def forward(self, x):
lstm_out, self.hidden = self.lstm(x, self.hidden)
output = self.proj(lstm_out)
result = F.sigmoid(output)
return result
I want to use LSTM to classify a sentence to good (1) or bad (0). Using this code, I get the result which is time_step * batch_size * 1 but not 0 or 1. How to edit the code in order to get the classification result?
Theory:
Recall that an LSTM outputs a vector for every input in the series. You are using sentences, which are a series of words (probably converted to indices and then embedded as vectors). This code from the LSTM PyTorch tutorial makes clear exactly what I mean (***emphasis mine):
lstm = nn.LSTM(3, 3) # Input dim is 3, output dim is 3
inputs = [autograd.Variable(torch.randn((1, 3)))
for _ in range(5)] # make a sequence of length 5
# initialize the hidden state.
hidden = (autograd.Variable(torch.randn(1, 1, 3)),
autograd.Variable(torch.randn((1, 1, 3))))
for i in inputs:
# Step through the sequence one element at a time.
# after each step, hidden contains the hidden state.
out, hidden = lstm(i.view(1, 1, -1), hidden)
# alternatively, we can do the entire sequence all at once.
# the first value returned by LSTM is all of the hidden states throughout
# the sequence. the second is just the most recent hidden state
# *** (compare the last slice of "out" with "hidden" below, they are the same)
# The reason for this is that:
# "out" will give you access to all hidden states in the sequence
# "hidden" will allow you to continue the sequence and backpropagate,
# by passing it as an argument to the lstm at a later time
# Add the extra 2nd dimension
inputs = torch.cat(inputs).view(len(inputs), 1, -1)
hidden = (autograd.Variable(torch.randn(1, 1, 3)), autograd.Variable(
torch.randn((1, 1, 3)))) # clean out hidden state
out, hidden = lstm(inputs, hidden)
print(out)
print(hidden)
One more time: compare the last slice of "out" with "hidden" below, they are the same. Why? Well...
If you're familiar with LSTM's, I'd recommend the PyTorch LSTM docs at this point. Under the output section, notice h_t is output at every t.
Now if you aren't used to LSTM-style equations, take a look at Chris Olah's LSTM blog post. Scroll down to the diagram of the unrolled network:
As you feed your sentence in word-by-word (x_i-by-x_i+1), you get an output from each timestep. You want to interpret the entire sentence to classify it. So you must wait until the LSTM has seen all the words. That is, you need to take h_t where t is the number of words in your sentence.
Code:
Here's a coding reference. I'm not going to copy-paste the entire thing, just the relevant parts. The magic happens at self.hidden2label(lstm_out[-1])
class LSTMClassifier(nn.Module):
def __init__(self, embedding_dim, hidden_dim, vocab_size, label_size, batch_size):
...
self.word_embeddings = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim)
self.hidden2label = nn.Linear(hidden_dim, label_size)
self.hidden = self.init_hidden()
def init_hidden(self):
return (autograd.Variable(torch.zeros(1, self.batch_size, self.hidden_dim)),
autograd.Variable(torch.zeros(1, self.batch_size, self.hidden_dim)))
def forward(self, sentence):
embeds = self.word_embeddings(sentence)
x = embeds.view(len(sentence), self.batch_size , -1)
lstm_out, self.hidden = self.lstm(x, self.hidden)
y = self.hidden2label(lstm_out[-1])
log_probs = F.log_softmax(y)
return log_probs
The main problem you need to figure out is the in which dim place you should put your batch size when you prepare your data. As far as I know, if you didn't set it in your nn.LSTM() init function, it will automatically assume that the second dim is your batch size, which is quite different compared to other DNN framework. Maybe you can try:
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
like this to ask your model to treat your first dim as the batch dim.
As a last layer you have to have a linear layer for however many classes you want i.e 10 if you are doing digit classification as in MNIST . For your case since you are doing a yes/no (1/0) classification you have two lablels/ classes so you linear layer has two classes. I suggest adding a linear layer as
nn.Linear ( feature_size_from_previous_layer , 2)
and then train the model using a cross-entropy loss.
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)