How to parallelize classification with Zero Shot Classification by Huggingface? - python-3.x

I have around 70 categories (it can be 20 or 30 also) and I want to be able to parallelize the process using ray but I get an error:
import pandas as pd
import swifter
import json
import ray
from transformers import pipeline
classifier = pipeline("zero-shot-classification")
labels = ["vegetables", "potato", "bell pepper", "tomato", "onion", "carrot", "broccoli",
"lettuce", "cucumber", "celery", "corn", "garlic", "mashrooms", "cabbage", "spinach",
"beans", "cauliflower", "asparagus", "fruits", "bananas", "apples", "strawberries",
"grapes", "oranges", "lemons", "avocados", "peaches", "blueberries", "pineapple",
"cherries", "pears", "mangoe", "berries", "red meat", "beef", "pork", "mutton",
"veal", "lamb", "venison", "goat", "mince", "white meat", "chicken", "turkey",
"duck", "goose", "pheasant", "rabbit", "Processed meat", "sausages", "bacon",
"ham", "hot dogs", "frankfurters", "tinned meat", "salami", "pâtés", "beef jerky",
"chorizo", "pepperoni", "corned beef", "fish", "catfish", "cod", "pangasius", "pollock",
"tilapia", "tuna", "salmon", "seafood", "shrimp", "squid", "mussels", "scallop",
"octopus", "grains", "rice", "wheat", "bulgur", "corn", "oat", "quinoa", "buckwheat",
"meals", "salad", "soup", "steak", "pizza", "pie", "burger", "backery", "bread", "souce",
"pasta", "sandwich", "waffles", "barbecue", "roll", "wings", "ribs", "cookies"]
ray.init()
#ray.remote
def get_meal_category(seq, labels, n=3):
res_dict = classifier(seq, labels)
return list(zip([seq for i in range(n)], res_dict["labels"][0:n], res_dict["scores"][0:n]))
res_list = ray.get([get_meal_category.remote(merged_df["title"][i], labels) for i in range(10)])
Where merged_df is a big dataframe with meal names in it's labels column like:
['Cappuccino',
'Stove Top Stuffing Mix For Turkey (Kraft)',
'Stove Top Stuffing Mix For Turkey (Kraft)',
'Roasted Dark Turkey Meat',
'Roasted Dark Turkey Meat',
'Roasted Dark Turkey Meat',
'Cappuccino',
'Low Fat 2% Small Curd Cottage Cheese (Daisy)',
'Rice Cereal (Gerber)',
'Oranges']
Please advise how to avoid ray's error and parallelize the classification.
The error:
2021-02-17 16:54:51,689 WARNING worker.py:1107 -- Warning: The remote function __main__.get_meal_category has size 1630925709 when pickled. It will be stored in Redis, which could cause memory issues. This may mean that its definition uses a large array or other object.
---------------------------------------------------------------------------
ConnectionResetError Traceback (most recent call last)
~/.local/lib/python3.8/site-packages/redis/connection.py in send_packed_command(self, command, check_health)
705 for item in command:
--> 706 sendall(self._sock, item)
707 except socket.timeout:
~/.local/lib/python3.8/site-packages/redis/_compat.py in sendall(sock, *args, **kwargs)
8 def sendall(sock, *args, **kwargs):
----> 9 return sock.sendall(*args, **kwargs)
10
ConnectionResetError: [Errno 104] Connection reset by peer
During handling of the above exception, another exception occurred:
ConnectionError Traceback (most recent call last)
<ipython-input-9-1a5345832fba> in <module>
----> 1 res_list = ray.get([get_meal_category.remote(merged_df["title"][i], labels) for i in range(10)])
<ipython-input-9-1a5345832fba> in <listcomp>(.0)
----> 1 res_list = ray.get([get_meal_category.remote(merged_df["title"][i], labels) for i in range(10)])
~/.local/lib/python3.8/site-packages/ray/remote_function.py in _remote_proxy(*args, **kwargs)
99 #wraps(function)
100 def _remote_proxy(*args, **kwargs):
--> 101 return self._remote(args=args, kwargs=kwargs)
102
103 self.remote = _remote_proxy
~/.local/lib/python3.8/site-packages/ray/remote_function.py in _remote(self, args, kwargs, num_returns, num_cpus, num_gpus, memory, object_store_memory, accelerator_type, resources, max_retries, placement_group, placement_group_bundle_index, placement_group_capture_child_tasks, override_environment_variables, name)
205
206 self._last_export_session_and_job = worker.current_session_and_job
--> 207 worker.function_actor_manager.export(self)
208
209 kwargs = {} if kwargs is None else kwargs
~/.local/lib/python3.8/site-packages/ray/function_manager.py in export(self, remote_function)
142 key = (b"RemoteFunction:" + self._worker.current_job_id.binary() + b":"
143 + remote_function._function_descriptor.function_id.binary())
--> 144 self._worker.redis_client.hset(
145 key,
146 mapping={
~/.local/lib/python3.8/site-packages/redis/client.py in hset(self, name, key, value, mapping)
3048 items.extend(pair)
3049
-> 3050 return self.execute_command('HSET', name, *items)
3051
3052 def hsetnx(self, name, key, value):
~/.local/lib/python3.8/site-packages/redis/client.py in execute_command(self, *args, **options)
898 conn = self.connection or pool.get_connection(command_name, **options)
899 try:
--> 900 conn.send_command(*args)
901 return self.parse_response(conn, command_name, **options)
902 except (ConnectionError, TimeoutError) as e:
~/.local/lib/python3.8/site-packages/redis/connection.py in send_command(self, *args, **kwargs)
723 def send_command(self, *args, **kwargs):
724 "Pack and send a command to the Redis server"
--> 725 self.send_packed_command(self.pack_command(*args),
726 check_health=kwargs.get('check_health', True))
727
~/.local/lib/python3.8/site-packages/redis/connection.py in send_packed_command(self, command, check_health)
715 errno = e.args[0]
716 errmsg = e.args[1]
--> 717 raise ConnectionError("Error %s while writing to socket. %s." %
718 (errno, errmsg))
719 except BaseException:
ConnectionError: Error 104 while writing to socket. Connection reset by peer.

This error is happening because of sending large objects to redis. merged_df is a large dataframe and since you are calling get_meal_category 10 times, Ray will attempt to serialize merged_df 10 times. Instead if you put merged_df into the Ray object store just once, and then pass along a reference to the object, this should work.
EDIT: Since the classifier is also large, do something similar for that as well.
Can you try something like this:
ray.init()
df_ref = ray.put(merged_df)
model_ref = ray.put(classifier)
#ray.remote
def get_meal_category(classifier, df, i, labels, n=3):
seq = df["title"][i]
res_dict = classifier(seq, labels)
return list(zip([seq for i in range(n)], res_dict["labels"][0:n], res_dict["scores"][0:n]))
res_list = ray.get([get_meal_category.remote(model_ref, df_ref, i, labels) for i in range(10)])

Related

How to perform Min Max Scaler on an array which contains columns with string and numbers?

please i really need your help, i'm struggling with MinMaxScaler, i would like to apply this technique on the array below that contains columns with string and numbers. I only want to implement this technique on the columns that contains numbers.
clean_tweets_no_urls = pd.DataFrame(counts_no_urls.most_common(15),
columns=['words', 'count'])
clean_tweets_no_urls.head()
That's my array
minmax_scaling(clean_tweets_no_urls, columns=['words', 'count'])
For that, i'm getting this result :
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-108-eeb7b44d7121> in <module>
----> 1 minmax_scaling(clean_tweets_no_urls, columns=['words', 'count'])
C:\ProgramData\Anaconda3\lib\site-packages\mlxtend\preprocessing\scaling.py in minmax_scaling(array, columns, min_val, max_val)
36
37 """
---> 38 ary_new = array.astype(float)
39 if len(ary_new.shape) == 1:
40 ary_new = ary_new[:, np.newaxis]
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py in astype(self, dtype, copy, errors)
5696 else:
5697 # else, only a single dtype is given
-> 5698 new_data = self._data.astype(dtype=dtype, copy=copy, errors=errors)
5699 return self._constructor(new_data).__finalize__(self)
5700
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\internals\managers.py in astype(self, dtype, copy, errors)
580
581 def astype(self, dtype, copy: bool = False, errors: str = "raise"):
--> 582 return self.apply("astype", dtype=dtype, copy=copy, errors=errors)
583
584 def convert(self, **kwargs):
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\internals\managers.py in apply(self, f, filter, **kwargs)
440 applied = b.apply(f, **kwargs)
441 else:
--> 442 applied = getattr(b, f)(**kwargs)
443 result_blocks = _extend_blocks(applied, result_blocks)
444
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\internals\blocks.py in astype(self, dtype, copy, errors)
623 vals1d = values.ravel()
624 try:
--> 625 values = astype_nansafe(vals1d, dtype, copy=True)
626 except (ValueError, TypeError):
627 # e.g. astype_nansafe can fail on object-dtype of strings
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\dtypes\cast.py in astype_nansafe(arr, dtype, copy, skipna)
895 if copy or is_object_dtype(arr) or is_object_dtype(dtype):
896 # Explicit copy, or required since NumPy can't view from / to object.
--> 897 return arr.astype(dtype, copy=True)
898
899 return arr.view(dtype)
ValueError: could not convert string to float: 'joebiden'
from sklearn.preprocessing import minmax_scale
clean_tweets_no_urls[['count']] = minmax_scale.fit_transform(clean_tweets_no_urls[['count']])
This may be used to automate finding numeric columns.

FeatureTools TypeError: unhashable type: 'set'

I'm trying this code for featuretools:
features, feature_names = ft.dfs(entityset = es, target_entity = 'demo',
agg_primitives = ['count', 'max', 'time_since_first', 'median', 'time_since_last', 'avg_time_between',
'sum', 'mean'],
trans_primitives = ['is_weekend', 'year', 'week', 'divide_by_feature', 'percentile'])
But I had this error
TypeError Traceback (most recent call last)
<ipython-input-17-89e925ff895d> in <module>
3 agg_primitives = ['count', 'max', 'time_since_first', 'median', 'time_since_last', 'avg_time_between',
4 'sum', 'mean'],
----> 5 trans_primitives = ['is_weekend', 'year', 'week', 'divide_by_feature', 'percentile'])
~/.local/lib/python3.6/site-packages/featuretools/utils/entry_point.py in function_wrapper(*args, **kwargs)
44 ep.on_error(error=e,
45 runtime=runtime)
---> 46 raise e
47
48 # send return value
~/.local/lib/python3.6/site-packages/featuretools/utils/entry_point.py in function_wrapper(*args, **kwargs)
36 # call function
37 start = time.time()
---> 38 return_value = func(*args, **kwargs)
39 runtime = time.time() - start
40 except Exception as e:
~/.local/lib/python3.6/site-packages/featuretools/synthesis/dfs.py in dfs(entities, relationships, entityset, target_entity, cutoff_time, instance_ids, agg_primitives, trans_primitives, groupby_trans_primitives, allowed_paths, max_depth, ignore_entities, ignore_variables, seed_features, drop_contains, drop_exact, where_primitives, max_features, cutoff_time_in_index, save_progress, features_only, training_window, approximate, chunk_size, n_jobs, dask_kwargs, verbose, return_variable_types)
226 n_jobs=n_jobs,
227 dask_kwargs=dask_kwargs,
--> 228 verbose=verbose)
229 return feature_matrix, features
~/.local/lib/python3.6/site-packages/featuretools/computational_backends/calculate_feature_matrix.py in calculate_feature_matrix(features, entityset, cutoff_time, instance_ids, entities, relationships, cutoff_time_in_index, training_window, approximate, save_progress, verbose, chunk_size, n_jobs, dask_kwargs)
265 cutoff_df_time_var=cutoff_df_time_var,
266 target_time=target_time,
--> 267 pass_columns=pass_columns)
268
269 feature_matrix = pd.concat(feature_matrix)
~/.local/lib/python3.6/site-packages/featuretools/computational_backends/calculate_feature_matrix.py in linear_calculate_chunks(chunks, feature_set, approximate, training_window, verbose, save_progress, entityset, no_unapproximated_aggs, cutoff_df_time_var, target_time, pass_columns)
496 no_unapproximated_aggs,
497 cutoff_df_time_var,
--> 498 target_time, pass_columns)
499 feature_matrix.append(_feature_matrix)
500 # Do a manual garbage collection in case objects from calculate_chunk
~/.local/lib/python3.6/site-packages/featuretools/computational_backends/calculate_feature_matrix.py in calculate_chunk(chunk, feature_set, entityset, approximate, training_window, verbose, save_progress, no_unapproximated_aggs, cutoff_df_time_var, target_time, pass_columns)
341 ids,
342 precalculated_features=precalculated_features_trie,
--> 343 training_window=window)
344
345 id_name = _feature_matrix.index.name
~/.local/lib/python3.6/site-packages/featuretools/computational_backends/utils.py in wrapped(*args, **kwargs)
35 def wrapped(*args, **kwargs):
36 if save_progress is None:
---> 37 r = method(*args, **kwargs)
38 else:
39 time = args[0].to_pydatetime()
~/.local/lib/python3.6/site-packages/featuretools/computational_backends/calculate_feature_matrix.py in calc_results(time_last, ids, precalculated_features, training_window)
316 ignored=all_approx_feature_set)
317
--> 318 matrix = calculator.run(ids)
319 return matrix
320
~/.local/lib/python3.6/site-packages/featuretools/computational_backends/feature_set_calculator.py in run(self, instance_ids)
100 precalculated_trie=self.precalculated_features,
101 filter_variable=target_entity.index,
--> 102 filter_values=instance_ids)
103
104 # The dataframe for the target entity should be stored at the root of
~/.local/lib/python3.6/site-packages/featuretools/computational_backends/feature_set_calculator.py in _calculate_features_for_entity(self, entity_id, feature_trie, df_trie, full_entity_df_trie, precalculated_trie, filter_variable, filter_values, parent_data)
187 columns=columns,
188 time_last=self.time_last,
--> 189 training_window=self.training_window)
190
191 # Step 2: Add variables to the dataframe linking it to all ancestors.
~/.local/lib/python3.6/site-packages/featuretools/entityset/entity.py in query_by_values(self, instance_vals, variable_id, columns, time_last, training_window)
271
272 if columns is not None:
--> 273 df = df[columns]
274
275 return df
~/.local/lib/python3.6/site-packages/pandas/core/frame.py in __getitem__(self, key)
2686 return self._getitem_multilevel(key)
2687 else:
-> 2688 return self._getitem_column(key)
2689
2690 def _getitem_column(self, key):
~/.local/lib/python3.6/site-packages/pandas/core/frame.py in _getitem_column(self, key)
2693 # get column
2694 if self.columns.is_unique:
-> 2695 return self._get_item_cache(key)
2696
2697 # duplicate columns & possible reduce dimensionality
~/.local/lib/python3.6/site-packages/pandas/core/generic.py in _get_item_cache(self, item)
2485 """Return the cached item, item represents a label indexer."""
2486 cache = self._item_cache
-> 2487 res = cache.get(item)
2488 if res is None:
2489 values = self._data.get(item)
TypeError: unhashable type: 'set'
I also tried the simplest code for deep feature synthesis (dfs) as shown below, but it still encountered the same error
features, feature_names = ft.dfs(entityset = es, target_entity = 'demo')
I'm not really sure why I encountered this error, any help or recommendations on how to go about from here is deeply appreciated.
Thanks in advance for your help!
I found a solution, my current version had bugs in it that was fixed by the FeatureTools team. Just run pip install directly from master,
pip install --upgrade https://github.com/featuretools/featuretools/zipball/master
This fixed and has been released in Featuretools 0.9.1. If you upgrade to the latest version of Featuretools, it will go away.

fit_transform error using CountVectorizer

So I have a dataframe X which looks something like this:
X.head()
0 My wife took me here on my birthday for breakf...
1 I have no idea why some people give bad review...
3 Rosie, Dakota, and I LOVE Chaparral Dog Park!!...
4 General Manager Scott Petello is a good egg!!!...
6 Drop what you're doing and drive here. After I...
Name: text, dtype: object
And then,
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer()
X = cv.fit_transform(X)
But I get this error:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-61-8ff79b91e317> in <module>()
----> 1 X = cv.fit_transform(X)
~/anaconda3/lib/python3.6/site-packages/sklearn/feature_extraction/text.py in fit_transform(self, raw_documents, y)
867
868 vocabulary, X = self._count_vocab(raw_documents,
--> 869 self.fixed_vocabulary_)
870
871 if self.binary:
~/anaconda3/lib/python3.6/site-packages/sklearn/feature_extraction/text.py in _count_vocab(self, raw_documents, fixed_vocab)
790 for doc in raw_documents:
791 feature_counter = {}
--> 792 for feature in analyze(doc):
793 try:
794 feature_idx = vocabulary[feature]
~/anaconda3/lib/python3.6/site-packages/sklearn/feature_extraction/text.py in <lambda>(doc)
264
265 return lambda doc: self._word_ngrams(
--> 266 tokenize(preprocess(self.decode(doc))), stop_words)
267
268 else:
~/anaconda3/lib/python3.6/site-packages/sklearn/feature_extraction/text.py in <lambda>(x)
230
231 if self.lowercase:
--> 232 return lambda x: strip_accents(x.lower())
233 else:
234 return strip_accents
~/anaconda3/lib/python3.6/site-packages/scipy/sparse/base.py in __getattr__(self, attr)
574 return self.getnnz()
575 else:
--> 576 raise AttributeError(attr + " not found")
577
578 def transpose(self, axes=None, copy=False):
AttributeError: lower not found
No idea why.
You need to specify the column name of the text data even if the dataframe has single column.
X_countMatrix = cv.fit_transform(X['text'])
Because a CountVectorizer expects an iterable as input and when you supply a dataframe as an argument, only thing thats iterated is the column names. So even if you did not have any errors, that would be incorrect. Lucky that you got an error and got a chance to correct it.

Tensorflow: function.defun with a a while loop in the body is throwing shape error

I am using a while loop to calculate a cost function for memory reasons. When calculating the gradient, tensorflow will store Nm tensors where Nm is the number of iterations in my while loop (this cuases the same memory issues I had with the original energy functions). I do not want that as I don't have enough memory. So I want to register a new op along with a gradient function that both use a while loop. However I am having issues with using function.defun and a while loop. To simplify things, I have a small test example below:
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.framework import function
def _run(tensor):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
res = sess.run(tensor)
return res
#function.Defun(tf.float32,tf.float32,func_name ='tf_test_log')#,grad_func=tf_test_logGrad)
def tf_test_log(t_x,t_y):
#N = t_x.shape[0].value
condition = lambda i,m1: i<N
def body(index,x):
#return[(index+1),tf.concat([x, tf.expand_dims(tf.exp( tf.add( t_x[:,index],t_y[:,index]) ),1) ],1 ) ]
return[(index+1),tf.add(x, tf.exp( tf.add( t_x[:,0],t_y[:,0]) ) ) ]
i0 = tf.constant(0,dtype=tf.int32)
m0 = tf.zeros([N,1],dType)
ijk_0 = [i0,m0]
L,t_log_x = tf.while_loop(condition,body,ijk_0,
shape_invariants=[i0.get_shape(),
tf.TensorShape([N,None])]
)
return t_log_x
dType = tf.float32
N = np.int32(100)
t_N = tf.constant(N,dtype = tf.int32)
t_x = tf.constant(np.random.randn(N,N),dtype = dType)
t_y = tf.constant(np.random.randn(N,N),dtype = dType)
ys = _run(tf_test_log(t_x,t_y))
I then try to test the new op:
I get a Value error: The shape for while/Merge_1:0 is not an invariant for the loop. It enters the loop with shape (100, ?), but has shape after one iteration. Provide shape invariants using either the shape_invariants argument of tf.while_loop or set_shape() on the loop variables.
Note that calling
If i use a concatenate operation (instead of the add operation that gets returned by my while loop), I do not get any issues.
However, If I do not set N as a global variable (i.e. I do N = t_x.shape[0]) inside the body of the tf_test_log function, I get a Value error.
ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 1)
What is wrong with my code? Any help is greatly appreciated!
I am using python 3.5 on ubuntu 16.04 and tensorflow 1.4
full output:
ValueError Traceback (most recent call last)
~/Documents/TheEffingPhDHatersGonnaHate/PAM/defun_while.py in <module>()
51 t_x = tf.constant(np.random.randn(N,N),dtype = dType)
52 t_y = tf.constant(np.random.randn(N,N),dtype = dType)
---> 53 ys = _run(tf_test_log(t_x,t_y))
54
55
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in __call__(self, *args, **kwargs)
503
504 def __call__(self, *args, **kwargs):
--> 505 self.add_to_graph(ops.get_default_graph())
506 args = [ops.convert_to_tensor(_) for _ in args] + self._extra_inputs
507 ret, op = _call(self._signature, *args, **kwargs)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in add_to_graph(self, g)
484 def add_to_graph(self, g):
485 """Adds this function into the graph g."""
--> 486 self._create_definition_if_needed()
487
488 # Adds this function into 'g'.
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed(self)
319 """Creates the function definition if it's not created yet."""
320 with context.graph_mode():
--> 321 self._create_definition_if_needed_impl()
322
323 def _create_definition_if_needed_impl(self):
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed_impl(self)
336 # Call func and gather the output tensors.
337 with vs.variable_scope("", custom_getter=temp_graph.getvar):
--> 338 outputs = self._func(*inputs)
339
340 # There is no way of distinguishing between a function not returning
~/Documents/TheEffingPhDHatersGonnaHate/PAM/defun_while.py in tf_test_log(t_x, t_y)
39 L,t_log_x = tf.while_loop(condition,body,ijk_0,
40 shape_invariants=[i0.get_shape(),
---> 41 tf.TensorShape([N,None])]
42 )
43 return t_log_x
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in while_loop(cond, body, loop_vars, shape_invariants, parallel_iterations, back_prop, swap_memory, name)
2814 loop_context = WhileContext(parallel_iterations, back_prop, swap_memory) # pylint: disable=redefined-outer-name
2815 ops.add_to_collection(ops.GraphKeys.WHILE_CONTEXT, loop_context)
-> 2816 result = loop_context.BuildLoop(cond, body, loop_vars, shape_invariants)
2817 return result
2818
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in BuildLoop(self, pred, body, loop_vars, shape_invariants)
2638 self.Enter()
2639 original_body_result, exit_vars = self._BuildLoop(
-> 2640 pred, body, original_loop_vars, loop_vars, shape_invariants)
2641 finally:
2642 self.Exit()
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in _BuildLoop(self, pred, body, original_loop_vars, loop_vars, shape_invariants)
2619 for m_var, n_var in zip(merge_vars, next_vars):
2620 if isinstance(m_var, ops.Tensor):
-> 2621 _EnforceShapeInvariant(m_var, n_var)
2622
2623 # Exit the loop.
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in _EnforceShapeInvariant(merge_var, next_var)
576 "Provide shape invariants using either the `shape_invariants` "
577 "argument of tf.while_loop or set_shape() on the loop variables."
--> 578 % (merge_var.name, m_shape, n_shape))
579 else:
580 if not isinstance(var, (ops.IndexedSlices, sparse_tensor.SparseTensor)):
ValueError: The shape for while/Merge_1:0 is not an invariant for the loop. It enters the loop with shape (100, ?), but has shape <unknown> after one iteration. Provide shape invariants using either the `shape_invariants` argument of tf.while_loop or set_shape() on the loop variables.
Thanks #Alexandre Passos for the suggestion in the comment above!
The following piece of code is a modification of the original with a set_shape function added inside the body.
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.framework import function
def _run(tensor):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
res = sess.run(tensor)
return res
#function.Defun(tf.float32,tf.float32,tf.float32,func_name ='tf_test_logGrad')
def tf_test_logGrad(t_x,t_y,grad):
return grad
#function.Defun(tf.float32,tf.float32,func_name ='tf_test_log')#,grad_func=tf_test_logGrad)
def tf_test_log(t_x,t_y):
#N = t_x.shape[0].value
condition = lambda i,m1: i<N
def body(index,x):
#return[(index+1),tf.concat([x, tf.expand_dims(tf.exp( tf.add( t_x[:,index],t_y[:,index]) ),1) ],1 ) ]
x = tf.add(x, tf.exp( tf.add( t_x[:,0],t_y[:,0]) ) )
x.set_shape([N])
return[(index+1), x]
i0 = tf.constant(0,dtype=tf.int32)
m0 = tf.zeros([N],dType)
ijk_0 = [i0,m0]
L,t_log_x = tf.while_loop(condition,body,ijk_0,
shape_invariants=[i0.get_shape(),
tf.TensorShape([N])]
)
return t_log_x
dType = tf.float32
N = np.int32(100)
t_N = tf.constant(N,dtype = tf.int32)
t_x = tf.constant(np.random.randn(N,N),dtype = dType)
t_y = tf.constant(np.random.randn(N,N),dtype = dType)
ys = _run(tf_test_log(t_x,t_y))
The Issue of global N still persists.
You still need to set the shape of the loop tensors as a global variable outside of the defun decorator. If you try to get it from the shape of the inputs of the defun decorator, you get:
TypeError Traceback (most recent call last)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/array_ops.py in zeros(shape, dtype, name)
1438 shape = tensor_shape.as_shape(shape)
-> 1439 output = constant(zero, shape=shape, dtype=dtype, name=name)
1440 except (TypeError, ValueError):
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py in constant(value, dtype, shape, name, verify_shape)
207 tensor_util.make_tensor_proto(
--> 208 value, dtype=dtype, shape=shape, verify_shape=verify_shape))
209 dtype_value = attr_value_pb2.AttrValue(type=tensor_value.tensor.dtype)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/tensor_util.py in make_tensor_proto(values, dtype, shape, verify_shape)
379 # exception when dtype is set to np.int64
--> 380 if shape is not None and np.prod(shape, dtype=np.int64) == 0:
381 nparray = np.empty(shape, dtype=np_dt)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/numpy/core/fromnumeric.py in prod(a, axis, dtype, out, keepdims)
2517 return _methods._prod(a, axis=axis, dtype=dtype,
-> 2518 out=out, **kwargs)
2519
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/numpy/core/_methods.py in _prod(a, axis, dtype, out, keepdims)
34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False):
---> 35 return umr_prod(a, axis, dtype, out, keepdims)
36
TypeError: __int__ returned non-int (type NoneType)
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
~/Documents/TheEffingPhDHatersGonnaHate/PAM/defun_while.py in <module>()
52 t_x = tf.constant(np.random.randn(N,N),dtype = dType)
53 t_y = tf.constant(np.random.randn(N,N),dtype = dType)
---> 54 ys = _run(tf_test_log(t_x,t_y))
55
56
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in __call__(self, *args, **kwargs)
503
504 def __call__(self, *args, **kwargs):
--> 505 self.add_to_graph(ops.get_default_graph())
506 args = [ops.convert_to_tensor(_) for _ in args] + self._extra_inputs
507 ret, op = _call(self._signature, *args, **kwargs)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in add_to_graph(self, g)
484 def add_to_graph(self, g):
485 """Adds this function into the graph g."""
--> 486 self._create_definition_if_needed()
487
488 # Adds this function into 'g'.
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed(self)
319 """Creates the function definition if it's not created yet."""
320 with context.graph_mode():
--> 321 self._create_definition_if_needed_impl()
322
323 def _create_definition_if_needed_impl(self):
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed_impl(self)
336 # Call func and gather the output tensors.
337 with vs.variable_scope("", custom_getter=temp_graph.getvar):
--> 338 outputs = self._func(*inputs)
339
340 # There is no way of distinguishing between a function not returning
~/Documents/TheEffingPhDHatersGonnaHate/PAM/defun_while.py in tf_test_log(t_x, t_y)
33
34 i0 = tf.constant(0,dtype=tf.int32)
---> 35 m0 = tf.zeros([N],dType)
36
37
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/array_ops.py in zeros(shape, dtype, name)
1439 output = constant(zero, shape=shape, dtype=dtype, name=name)
1440 except (TypeError, ValueError):
-> 1441 shape = ops.convert_to_tensor(shape, dtype=dtypes.int32, name="shape")
1442 output = fill(shape, constant(zero, dtype=dtype), name=name)
1443 assert output.dtype.base_dtype == dtype
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/ops.py in convert_to_tensor(value, dtype, name, preferred_dtype)
834 name=name,
835 preferred_dtype=preferred_dtype,
--> 836 as_ref=False)
837
838
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/ops.py in internal_convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, ctx)
924
925 if ret is None:
--> 926 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
927
928 if ret is NotImplemented:
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py in _tensor_shape_tensor_conversion_function(s, dtype, name, as_ref)
248 if not s.is_fully_defined():
249 raise ValueError(
--> 250 "Cannot convert a partially known TensorShape to a Tensor: %s" % s)
251 s_list = s.as_list()
252 int64_value = 0
ValueError: Cannot convert a partially known TensorShape to a Tensor: (?,)

tfidf vectorizer process shows error

I am working on non-Engish corpus analysis but facing several problems. One of those problems is tfidf_vectorizer. After importing concerned liberaries, I processed following code to get results
contents = [open("D:\test.txt", encoding='utf8').read()]
#define vectorizer parameters
tfidf_vectorizer = TfidfVectorizer(max_df=0.8, max_features=200000,
min_df=0.2, stop_words=stopwords,
use_idf=True, tokenizer=tokenize_and_stem, ngram_range=(3,3))
%time tfidf_matrix = tfidf_vectorizer.fit_transform(contents)
print(tfidf_matrix.shape)
After processing above code I got following error message.
ValueError Traceback (most recent call last)
<ipython-input-144-bbcec8b8c065> in <module>()
5 use_idf=True, tokenizer=tokenize_and_stem, ngram_range=(3,3))
6
----> 7 get_ipython().magic('time tfidf_matrix = tfidf_vectorizer.fit_transform(contents) #fit the vectorizer to synopses')
8
9 print(tfidf_matrix.shape)
C:\Users\mazhar\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py in magic(self, arg_s)
2156 magic_name, _, magic_arg_s = arg_s.partition(' ')
2157 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
-> 2158 return self.run_line_magic(magic_name, magic_arg_s)
2159
2160 #-------------------------------------------------------------------------
C:\Users\mazhar\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py in run_line_magic(self, magic_name, line)
2077 kwargs['local_ns'] = sys._getframe(stack_depth).f_locals
2078 with self.builtin_trap:
-> 2079 result = fn(*args,**kwargs)
2080 return result
2081
<decorator-gen-60> in time(self, line, cell, local_ns)
C:\Users\mazhar\Anaconda3\lib\site-packages\IPython\core\magic.py in <lambda>(f, *a, **k)
186 # but it's overkill for just that one bit of state.
187 def magic_deco(arg):
--> 188 call = lambda f, *a, **k: f(*a, **k)
189
190 if callable(arg):
C:\Users\mazhar\Anaconda3\lib\site-packages\IPython\core\magics\execution.py in time(self, line, cell, local_ns)
1178 else:
1179 st = clock2()
-> 1180 exec(code, glob, local_ns)
1181 end = clock2()
1182 out = None
<timed exec> in <module>()
C:\Users\mazhar\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in fit_transform(self, raw_documents, y)
1303 Tf-idf-weighted document-term matrix.
1304 """
-> 1305 X = super(TfidfVectorizer, self).fit_transform(raw_documents)
1306 self._tfidf.fit(X)
1307 # X is already a transformed view of raw_documents so
C:\Users\mazhar\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in fit_transform(self, raw_documents, y)
836 max_doc_count,
837 min_doc_count,
--> 838 max_features)
839
840 self.vocabulary_ = vocabulary
C:\Users\mazhar\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in _limit_features(self, X, vocabulary, high, low, limit)
731 kept_indices = np.where(mask)[0]
732 if len(kept_indices) == 0:
--> 733 raise ValueError("After pruning, no terms remain. Try a lower"
734 " min_df or a higher max_df.")
735 return X[:, kept_indices], removed_terms
ValueError: After pruning, no terms remain. Try a lower min_df or a higher max_df.
If I change then min and max value the error is
Assuming your tokeniser works as expected, I see two problems with your code. First, TfIdfVectorizer expects a list of strings, whereas you are providing a single string. Second, min_df=0.2 is quite high- to be included, a term needs to occur in 20% of all documents, which is very unlikely for trigram features.
The following works for me
from sklearn.feature_extraction.text import TfidfVectorizer
with open("README.md") as infile:
contents = infile.readlines() # Note: readlines() instead of read()
tfidf_vectorizer = TfidfVectorizer(max_df=0.8, max_features=200000,
min_df=2, use_idf=True, ngram_range=(3,3))
# note: minimum of 2 occurrences, rather than 0.2 (20% of all documents)
tfidf_matrix = tfidf_vectorizer.fit_transform(contents)
print(tfidf_matrix.shape)
outputs (155, 28)

Resources