Data looks like this :
data_clean2.head(3)
text target
0 [deed, reason, earthquak, may, allah, forgiv, u] 1
1 [forest, fire, near, la, rong, sask, canada] 1
2 [resid, ask, shelter, place, notifi, offic, evacu, shelter, place, order, expect] 1
I got this by stemming and lemmatizing the sentence and tokenizing before that. ( Hope that is right).
Now I want to use:
vectorizer = TfidfVectorizer()
vectors = vectorizer.fit_transform(data_clean2['text'])
It gives me the following error :
AttributeError Traceback (most recent call last)
<ipython-input-140-6f68d1115c5f> in <module>
1 vectorizer = TfidfVectorizer()
----> 2 vectors = vectorizer.fit_transform(data_clean2['text'])
~\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in fit_transform(self, raw_documents, y)
1650 """
1651 self._check_params()
-> 1652 X = super().fit_transform(raw_documents)
1653 self._tfidf.fit(X)
1654 # X is already a transformed view of raw_documents so
~\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in fit_transform(self, raw_documents, y)
1056
1057 vocabulary, X = self._count_vocab(raw_documents,
-> 1058 self.fixed_vocabulary_)
1059
1060 if self.binary:
~\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in _count_vocab(self, raw_documents, fixed_vocab)
968 for doc in raw_documents:
969 feature_counter = {}
--> 970 for feature in analyze(doc):
971 try:
972 feature_idx = vocabulary[feature]
~\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in <lambda>(doc)
350 tokenize)
351 return lambda doc: self._word_ngrams(
--> 352 tokenize(preprocess(self.decode(doc))), stop_words)
353
354 else:
~\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in <lambda>(x)
254
255 if self.lowercase:
--> 256 return lambda x: strip_accents(x.lower())
257 else:
258 return strip_accents
AttributeError: 'list' object has no attribute 'lower'
I know that I somehow cannot use it on the list, so what is my play here, trying to return the list into a string again?
Yes, first convert to string using:
data_clean2['text'] = data_clean2['text'].apply(', '.join)
Then use:
vectorizer = TfidfVectorizer()
vectors = vectorizer.fit_transform(data_clean2['text'])
v = pd.DataFrame(vectors.toarray(), columns = vectorizer.get_feature_names())
So I have a dataframe X which looks something like this:
X.head()
0 My wife took me here on my birthday for breakf...
1 I have no idea why some people give bad review...
3 Rosie, Dakota, and I LOVE Chaparral Dog Park!!...
4 General Manager Scott Petello is a good egg!!!...
6 Drop what you're doing and drive here. After I...
Name: text, dtype: object
And then,
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer()
X = cv.fit_transform(X)
But I get this error:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-61-8ff79b91e317> in <module>()
----> 1 X = cv.fit_transform(X)
~/anaconda3/lib/python3.6/site-packages/sklearn/feature_extraction/text.py in fit_transform(self, raw_documents, y)
867
868 vocabulary, X = self._count_vocab(raw_documents,
--> 869 self.fixed_vocabulary_)
870
871 if self.binary:
~/anaconda3/lib/python3.6/site-packages/sklearn/feature_extraction/text.py in _count_vocab(self, raw_documents, fixed_vocab)
790 for doc in raw_documents:
791 feature_counter = {}
--> 792 for feature in analyze(doc):
793 try:
794 feature_idx = vocabulary[feature]
~/anaconda3/lib/python3.6/site-packages/sklearn/feature_extraction/text.py in <lambda>(doc)
264
265 return lambda doc: self._word_ngrams(
--> 266 tokenize(preprocess(self.decode(doc))), stop_words)
267
268 else:
~/anaconda3/lib/python3.6/site-packages/sklearn/feature_extraction/text.py in <lambda>(x)
230
231 if self.lowercase:
--> 232 return lambda x: strip_accents(x.lower())
233 else:
234 return strip_accents
~/anaconda3/lib/python3.6/site-packages/scipy/sparse/base.py in __getattr__(self, attr)
574 return self.getnnz()
575 else:
--> 576 raise AttributeError(attr + " not found")
577
578 def transpose(self, axes=None, copy=False):
AttributeError: lower not found
No idea why.
You need to specify the column name of the text data even if the dataframe has single column.
X_countMatrix = cv.fit_transform(X['text'])
Because a CountVectorizer expects an iterable as input and when you supply a dataframe as an argument, only thing thats iterated is the column names. So even if you did not have any errors, that would be incorrect. Lucky that you got an error and got a chance to correct it.
I am using a while loop to calculate a cost function for memory reasons. When calculating the gradient, tensorflow will store Nm tensors where Nm is the number of iterations in my while loop (this cuases the same memory issues I had with the original energy functions). I do not want that as I don't have enough memory. So I want to register a new op along with a gradient function that both use a while loop. However I am having issues with using function.defun and a while loop. To simplify things, I have a small test example below:
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.framework import function
def _run(tensor):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
res = sess.run(tensor)
return res
#function.Defun(tf.float32,tf.float32,func_name ='tf_test_log')#,grad_func=tf_test_logGrad)
def tf_test_log(t_x,t_y):
#N = t_x.shape[0].value
condition = lambda i,m1: i<N
def body(index,x):
#return[(index+1),tf.concat([x, tf.expand_dims(tf.exp( tf.add( t_x[:,index],t_y[:,index]) ),1) ],1 ) ]
return[(index+1),tf.add(x, tf.exp( tf.add( t_x[:,0],t_y[:,0]) ) ) ]
i0 = tf.constant(0,dtype=tf.int32)
m0 = tf.zeros([N,1],dType)
ijk_0 = [i0,m0]
L,t_log_x = tf.while_loop(condition,body,ijk_0,
shape_invariants=[i0.get_shape(),
tf.TensorShape([N,None])]
)
return t_log_x
dType = tf.float32
N = np.int32(100)
t_N = tf.constant(N,dtype = tf.int32)
t_x = tf.constant(np.random.randn(N,N),dtype = dType)
t_y = tf.constant(np.random.randn(N,N),dtype = dType)
ys = _run(tf_test_log(t_x,t_y))
I then try to test the new op:
I get a Value error: The shape for while/Merge_1:0 is not an invariant for the loop. It enters the loop with shape (100, ?), but has shape after one iteration. Provide shape invariants using either the shape_invariants argument of tf.while_loop or set_shape() on the loop variables.
Note that calling
If i use a concatenate operation (instead of the add operation that gets returned by my while loop), I do not get any issues.
However, If I do not set N as a global variable (i.e. I do N = t_x.shape[0]) inside the body of the tf_test_log function, I get a Value error.
ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 1)
What is wrong with my code? Any help is greatly appreciated!
I am using python 3.5 on ubuntu 16.04 and tensorflow 1.4
full output:
ValueError Traceback (most recent call last)
~/Documents/TheEffingPhDHatersGonnaHate/PAM/defun_while.py in <module>()
51 t_x = tf.constant(np.random.randn(N,N),dtype = dType)
52 t_y = tf.constant(np.random.randn(N,N),dtype = dType)
---> 53 ys = _run(tf_test_log(t_x,t_y))
54
55
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in __call__(self, *args, **kwargs)
503
504 def __call__(self, *args, **kwargs):
--> 505 self.add_to_graph(ops.get_default_graph())
506 args = [ops.convert_to_tensor(_) for _ in args] + self._extra_inputs
507 ret, op = _call(self._signature, *args, **kwargs)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in add_to_graph(self, g)
484 def add_to_graph(self, g):
485 """Adds this function into the graph g."""
--> 486 self._create_definition_if_needed()
487
488 # Adds this function into 'g'.
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed(self)
319 """Creates the function definition if it's not created yet."""
320 with context.graph_mode():
--> 321 self._create_definition_if_needed_impl()
322
323 def _create_definition_if_needed_impl(self):
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed_impl(self)
336 # Call func and gather the output tensors.
337 with vs.variable_scope("", custom_getter=temp_graph.getvar):
--> 338 outputs = self._func(*inputs)
339
340 # There is no way of distinguishing between a function not returning
~/Documents/TheEffingPhDHatersGonnaHate/PAM/defun_while.py in tf_test_log(t_x, t_y)
39 L,t_log_x = tf.while_loop(condition,body,ijk_0,
40 shape_invariants=[i0.get_shape(),
---> 41 tf.TensorShape([N,None])]
42 )
43 return t_log_x
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in while_loop(cond, body, loop_vars, shape_invariants, parallel_iterations, back_prop, swap_memory, name)
2814 loop_context = WhileContext(parallel_iterations, back_prop, swap_memory) # pylint: disable=redefined-outer-name
2815 ops.add_to_collection(ops.GraphKeys.WHILE_CONTEXT, loop_context)
-> 2816 result = loop_context.BuildLoop(cond, body, loop_vars, shape_invariants)
2817 return result
2818
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in BuildLoop(self, pred, body, loop_vars, shape_invariants)
2638 self.Enter()
2639 original_body_result, exit_vars = self._BuildLoop(
-> 2640 pred, body, original_loop_vars, loop_vars, shape_invariants)
2641 finally:
2642 self.Exit()
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in _BuildLoop(self, pred, body, original_loop_vars, loop_vars, shape_invariants)
2619 for m_var, n_var in zip(merge_vars, next_vars):
2620 if isinstance(m_var, ops.Tensor):
-> 2621 _EnforceShapeInvariant(m_var, n_var)
2622
2623 # Exit the loop.
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in _EnforceShapeInvariant(merge_var, next_var)
576 "Provide shape invariants using either the `shape_invariants` "
577 "argument of tf.while_loop or set_shape() on the loop variables."
--> 578 % (merge_var.name, m_shape, n_shape))
579 else:
580 if not isinstance(var, (ops.IndexedSlices, sparse_tensor.SparseTensor)):
ValueError: The shape for while/Merge_1:0 is not an invariant for the loop. It enters the loop with shape (100, ?), but has shape <unknown> after one iteration. Provide shape invariants using either the `shape_invariants` argument of tf.while_loop or set_shape() on the loop variables.
Thanks #Alexandre Passos for the suggestion in the comment above!
The following piece of code is a modification of the original with a set_shape function added inside the body.
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.framework import function
def _run(tensor):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
res = sess.run(tensor)
return res
#function.Defun(tf.float32,tf.float32,tf.float32,func_name ='tf_test_logGrad')
def tf_test_logGrad(t_x,t_y,grad):
return grad
#function.Defun(tf.float32,tf.float32,func_name ='tf_test_log')#,grad_func=tf_test_logGrad)
def tf_test_log(t_x,t_y):
#N = t_x.shape[0].value
condition = lambda i,m1: i<N
def body(index,x):
#return[(index+1),tf.concat([x, tf.expand_dims(tf.exp( tf.add( t_x[:,index],t_y[:,index]) ),1) ],1 ) ]
x = tf.add(x, tf.exp( tf.add( t_x[:,0],t_y[:,0]) ) )
x.set_shape([N])
return[(index+1), x]
i0 = tf.constant(0,dtype=tf.int32)
m0 = tf.zeros([N],dType)
ijk_0 = [i0,m0]
L,t_log_x = tf.while_loop(condition,body,ijk_0,
shape_invariants=[i0.get_shape(),
tf.TensorShape([N])]
)
return t_log_x
dType = tf.float32
N = np.int32(100)
t_N = tf.constant(N,dtype = tf.int32)
t_x = tf.constant(np.random.randn(N,N),dtype = dType)
t_y = tf.constant(np.random.randn(N,N),dtype = dType)
ys = _run(tf_test_log(t_x,t_y))
The Issue of global N still persists.
You still need to set the shape of the loop tensors as a global variable outside of the defun decorator. If you try to get it from the shape of the inputs of the defun decorator, you get:
TypeError Traceback (most recent call last)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/array_ops.py in zeros(shape, dtype, name)
1438 shape = tensor_shape.as_shape(shape)
-> 1439 output = constant(zero, shape=shape, dtype=dtype, name=name)
1440 except (TypeError, ValueError):
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py in constant(value, dtype, shape, name, verify_shape)
207 tensor_util.make_tensor_proto(
--> 208 value, dtype=dtype, shape=shape, verify_shape=verify_shape))
209 dtype_value = attr_value_pb2.AttrValue(type=tensor_value.tensor.dtype)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/tensor_util.py in make_tensor_proto(values, dtype, shape, verify_shape)
379 # exception when dtype is set to np.int64
--> 380 if shape is not None and np.prod(shape, dtype=np.int64) == 0:
381 nparray = np.empty(shape, dtype=np_dt)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/numpy/core/fromnumeric.py in prod(a, axis, dtype, out, keepdims)
2517 return _methods._prod(a, axis=axis, dtype=dtype,
-> 2518 out=out, **kwargs)
2519
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/numpy/core/_methods.py in _prod(a, axis, dtype, out, keepdims)
34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False):
---> 35 return umr_prod(a, axis, dtype, out, keepdims)
36
TypeError: __int__ returned non-int (type NoneType)
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
~/Documents/TheEffingPhDHatersGonnaHate/PAM/defun_while.py in <module>()
52 t_x = tf.constant(np.random.randn(N,N),dtype = dType)
53 t_y = tf.constant(np.random.randn(N,N),dtype = dType)
---> 54 ys = _run(tf_test_log(t_x,t_y))
55
56
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in __call__(self, *args, **kwargs)
503
504 def __call__(self, *args, **kwargs):
--> 505 self.add_to_graph(ops.get_default_graph())
506 args = [ops.convert_to_tensor(_) for _ in args] + self._extra_inputs
507 ret, op = _call(self._signature, *args, **kwargs)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in add_to_graph(self, g)
484 def add_to_graph(self, g):
485 """Adds this function into the graph g."""
--> 486 self._create_definition_if_needed()
487
488 # Adds this function into 'g'.
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed(self)
319 """Creates the function definition if it's not created yet."""
320 with context.graph_mode():
--> 321 self._create_definition_if_needed_impl()
322
323 def _create_definition_if_needed_impl(self):
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed_impl(self)
336 # Call func and gather the output tensors.
337 with vs.variable_scope("", custom_getter=temp_graph.getvar):
--> 338 outputs = self._func(*inputs)
339
340 # There is no way of distinguishing between a function not returning
~/Documents/TheEffingPhDHatersGonnaHate/PAM/defun_while.py in tf_test_log(t_x, t_y)
33
34 i0 = tf.constant(0,dtype=tf.int32)
---> 35 m0 = tf.zeros([N],dType)
36
37
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/array_ops.py in zeros(shape, dtype, name)
1439 output = constant(zero, shape=shape, dtype=dtype, name=name)
1440 except (TypeError, ValueError):
-> 1441 shape = ops.convert_to_tensor(shape, dtype=dtypes.int32, name="shape")
1442 output = fill(shape, constant(zero, dtype=dtype), name=name)
1443 assert output.dtype.base_dtype == dtype
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/ops.py in convert_to_tensor(value, dtype, name, preferred_dtype)
834 name=name,
835 preferred_dtype=preferred_dtype,
--> 836 as_ref=False)
837
838
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/ops.py in internal_convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, ctx)
924
925 if ret is None:
--> 926 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
927
928 if ret is NotImplemented:
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py in _tensor_shape_tensor_conversion_function(s, dtype, name, as_ref)
248 if not s.is_fully_defined():
249 raise ValueError(
--> 250 "Cannot convert a partially known TensorShape to a Tensor: %s" % s)
251 s_list = s.as_list()
252 int64_value = 0
ValueError: Cannot convert a partially known TensorShape to a Tensor: (?,)
I am trying to recreate this example of bayesian PK/PD modelling using pymc3.....
The video shows the WinBUGS code and I am trying to convert to pymc3
https://www.youtube.com/watch?v=AQDXRoBan6Y
model here....
http://imgur.com/ckoKPRF
WinBUGS code is here ....
http://imgur.com/TsViyBC
My code is ....
from pymc3 import Model, Normal, Lognormal, Uniform
import numpy as np
import pandas as pd
data = pd.read_csv('/Users/Home/Documents/pymc3/fxa.data.csv' )
cobs = np.array(data['cobs'])
fxa = np.array(data['fxa.inh.obs'])
pkpd_model = Model()
with pkpd_model:
# Priors for unknown model parameters
emax = Uniform ('emax', lower =0, upper =100)
ec50 = Lognormal('ec50', mu=0, tau = 100000)
gamma = Uniform('gamma', lower=0, upper =10)
sigma = Uniform('sigma', lower = 0, upper = 1000 )
# Expected value of outcome
fxaMean = emax*(np.power(cobs, gamma)) / (np.power(ec50, gamma) + np.power(cobs, gamma))
# Likelihood (sampling distribution) of observations
fxa = Normal('fxa', mu=fxaMean, sd=sigma, observed=fxa )
But when I run the code I get the following error, which seems to relate to the way theano is interpreting the np.power function.
I am not sure how to proceed as I am a noob to pymc3 and theano and PK/PD modelling too!
Thanks in advance
Applied interval-transform to emax and added transformed emax_interval to model.
Applied log-transform to ec50 and added transformed ec50_log to model.
Applied interval-transform to gamma and added transformed gamma_interval to model.
Applied interval-transform to sigma and added transformed sigma_interval to model.
---------------------------------------------------------------------------
AsTensorError Traceback (most recent call last)
<ipython-input-28-1fa311a15ed0> in <module>()
14
15 # Likelihood (sampling distribution) of observations
---> 16 fxa = Normal('fxa', mu=fxaMean, sd=sigma, observed=fxa )
//anaconda/lib/python2.7/site-packages/pymc3/distributions/distribution.pyc in __new__(cls, name, *args, **kwargs)
23 data = kwargs.pop('observed', None)
24 dist = cls.dist(*args, **kwargs)
---> 25 return model.Var(name, dist, data)
26 elif name is None:
27 return object.__new__(cls) # for pickle
//anaconda/lib/python2.7/site-packages/pymc3/model.pyc in Var(self, name, dist, data)
282 self.named_vars[v.name] = v
283 else:
--> 284 var = ObservedRV(name=name, data=data, distribution=dist, model=self)
285 self.observed_RVs.append(var)
286 if var.missing_values:
//anaconda/lib/python2.7/site-packages/pymc3/model.pyc in __init__(self, type, owner, index, name, data, distribution, model)
556 self.missing_values = data.missing_values
557
--> 558 self.logp_elemwiset = distribution.logp(data)
559 self.model = model
560 self.distribution = distribution
//anaconda/lib/python2.7/site-packages/pymc3/distributions/continuous.pyc in logp(self, value)
191 sd = self.sd
192 mu = self.mu
--> 193 return bound((-tau * (value - mu)**2 + T.log(tau / np.pi / 2.)) / 2.,
194 tau > 0, sd > 0)
195
//anaconda/lib/python2.7/site-packages/theano/tensor/var.pyc in __radd__(self, other)
232 # ARITHMETIC - RIGHT-OPERAND
233 def __radd__(self, other):
--> 234 return theano.tensor.basic.add(other, self)
235
236 def __rsub__(self, other):
//anaconda/lib/python2.7/site-packages/theano/gof/op.pyc in __call__(self, *inputs, **kwargs)
609 """
610 return_list = kwargs.pop('return_list', False)
--> 611 node = self.make_node(*inputs, **kwargs)
612
613 if config.compute_test_value != 'off':
//anaconda/lib/python2.7/site-packages/theano/tensor/elemwise.pyc in make_node(self, *inputs)
541 using DimShuffle.
542 """
--> 543 inputs = list(map(as_tensor_variable, inputs))
544 shadow = self.scalar_op.make_node(
545 *[get_scalar_type(dtype=i.type.dtype).make_variable()
//anaconda/lib/python2.7/site-packages/theano/tensor/basic.pyc in as_tensor_variable(x, name, ndim)
206 except Exception:
207 str_x = repr(x)
--> 208 raise AsTensorError("Cannot convert %s to TensorType" % str_x, type(x))
209
210 # this has a different name, because _as_tensor_variable is the
AsTensorError: ('Cannot convert [Elemwise{mul,no_inplace}.0 Elemwise{mul,no_inplace}.0\n Elemwise{mul,no_inplace}.0 ..., Elemwise{mul,no_inplace}.0\n Elemwise{mul,no_inplace}.0 Elemwise{mul,no_inplace}.0] to TensorType', <type 'numpy.ndarray'>)
Doh - replaced np.power with ** ! working fine!
I'm trying to do a weighted Ridge Regression with sklearn. However, the code breaks when I call the fit method. The exception I get is :
Exception: Data must be 1-dimensional
But I'm sure (by checking through print-statements) that the data I'm passing has the right shapes.
print temp1.shape #(781, 21)
print temp2.shape #(781,)
print weights.shape #(781,)
result=RidgeCV(normalize=True).fit(temp1,temp2,sample_weight=weights)
What could be going wrong ??
Here's the whole output :
---------------------------------------------------------------------------
Exception Traceback (most recent call last)
<ipython-input-65-a5b1eba5d9cf> in <module>()
22
23
---> 24 result=RidgeCV(normalize=True).fit(temp2,temp1, sample_weight=weights)
25
26
/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/ridge.pyc in fit(self, X, y, sample_weight)
868 gcv_mode=self.gcv_mode,
869 store_cv_values=self.store_cv_values)
--> 870 estimator.fit(X, y, sample_weight=sample_weight)
871 self.alpha_ = estimator.alpha_
872 if self.store_cv_values:
/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/ridge.pyc in fit(self, X, y, sample_weight)
793 else alpha)
794 if error:
--> 795 out, c = _errors(weighted_alpha, y, v, Q, QT_y)
796 else:
797 out, c = _values(weighted_alpha, y, v, Q, QT_y)
/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/ridge.pyc in _errors(self, alpha, y, v, Q, QT_y)
685 w = 1.0 / (v + alpha)
686 c = np.dot(Q, self._diag_dot(w, QT_y))
--> 687 G_diag = self._decomp_diag(w, Q)
688 # handle case where y is 2-d
689 if len(y.shape) != 1:
/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/ridge.pyc in _decomp_diag(self, v_prime, Q)
672 def _decomp_diag(self, v_prime, Q):
673 # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T))
--> 674 return (v_prime * Q ** 2).sum(axis=-1)
675
676 def _diag_dot(self, D, B):
/usr/local/lib/python2.7/dist-packages/pandas/core/ops.pyc in wrapper(left, right, name)
531 return left._constructor(wrap_results(na_op(lvalues, rvalues)),
532 index=left.index, name=left.name,
--> 533 dtype=dtype)
534 return wrapper
535
/usr/local/lib/python2.7/dist-packages/pandas/core/series.pyc in __init__(self, data, index, dtype, name, copy, fastpath)
209 else:
210 data = _sanitize_array(data, index, dtype, copy,
--> 211 raise_cast_failure=True)
212
213 data = SingleBlockManager(data, index, fastpath=True)
/usr/local/lib/python2.7/dist-packages/pandas/core/series.pyc in _sanitize_array(data, index, dtype, copy, raise_cast_failure)
2683 elif subarr.ndim > 1:
2684 if isinstance(data, np.ndarray):
-> 2685 raise Exception('Data must be 1-dimensional')
2686 else:
2687 subarr = _asarray_tuplesafe(data, dtype=dtype)
Exception: Data must be 1-dimensional
The error seems to be due to sample_weights being a Pandas series rather than a numpy array:
from sklearn.linear_model import RidgeCV
temp1 = pd.DataFrame(np.random.rand(781, 21))
temp2 = pd.Series(temp1.sum(1))
weights = pd.Series(1 + 0.1 * np.random.rand(781))
result = RidgeCV(normalize=True).fit(temp1, temp2,
sample_weight=weights)
# Exception: Data must be 1-dimensional
If you use a numpy array instead, the error goes away:
result = RidgeCV(normalize=True).fit(temp1, temp2,
sample_weight=weights.values)
This seems to be a bug; I've opened a scikit-learn issue to report this.