I have a dataframe like:
ìmport pandas as pd
df = pd.DataFrame({
"age" : [20,22,20,23],
"name" : ["A","B","C","A"],
"addres" : ["add1","add2","add3","add4"],
"job" : ["C","E","C","D"],
"score" : [0.44,0.43,0.25,0.36]
})
categors = ["name","addres","job"]
df:
age name addres job score
0 20 A add1 C 0.44
1 22 B add2 E 0.43
2 20 C add3 C 0.25
3 23 A add4 D 0.36
and I have a dict like this:
mapping_dict = {
"name" : {"A":0, "B": 1},
"addres" : {"add1": 0, "add2": 1, "add3":2},
"job" : {"A":0, "B":1, "C": 2, "D":3}
}
I would likt to apply this dictionary to their match column, so I can do this:
df[categors].replace(mapping_dict,inplace=True)
or
df[categors] = df[categors].replace(mapping_dict)
it's the same because they return the same problem:
name addres job
0 0 0 2
1 1 1 E
2 C 2 2
3 0 add4 3
The problem is that non matched values (like add4 in column addres or C in column name or E in column job) are not handled to be replaced with any argument of .replace function. I need those values to be mapped to -1
So, to achieve this, we can make a loop:
for column in categors:
df[column] = df[column].map(mapping_dict[column])
df
age name addres job score
0 20 0.0 0.0 2.0 0.44
1 22 1.0 1.0 NaN 0.43
2 20 NaN 2.0 2.0 0.25
3 23 0.0 NaN 3.0 0.36
and solve NaN with .fillna(-1) or better one
for column in categors:
l = lambda x: mapping_dict[column].get(x,-1)
df[column] = df[column].apply(l)
df
age name addres job score
0 20 0 0 2 0.44
1 22 1 1 -1 0.43
2 20 -1 2 2 0.25
3 23 0 -1 3 0.36
So, I know how to do the stuff, this has been proved.
My problems are:
I don't think that pandas was made to loop over columns, but vectorized functions applications over columns.
My real dataframe is large enought to need a vectorized function, and mapping_dict is large enough too.
So, If I could use apply with axis=1 and get the column name column_name somehow like pandas.Series.column_name, I could do something like :
df[columns].apply(lambda x: mapping_dict[x.column_name].get(x,-1) , axis=1)
By now, I think that an inherited class who owns from pandas.dataframe all its properties and adds x.column_name is the "Cannon to kill a mosquito" solution.
So do you know any fast, one line solution for this?
Add a "catch-all" to the end of the dict for each column. This was anything not matched becomes -1:
mapping_dict = {
"name" : {"A":0, "B": 1, ".*":-1},
"addres" : {"add1": 0, "add2": 1, "add3":2, ".*":-1},
"job" : {"A":0, "B":1, "C": 2, "D":3, ".*":-1}
}
Then just include the regex parameter in your replace.
df.replace(mapping_dict, inplace=True, regex=True)
age name addres job score
0 20 0 0 2 0.44
1 22 1 1 -1 0.43
2 20 -1 2 2 0.25
3 23 0 -1 3 0.36
Related
I am using the following code to print the missing value count and the column names.
#Looking for missing data and then handling it accordingly
def find_missing(data):
# number of missing values
count_missing = data_final.isnull().sum().values
# total records
total = data_final.shape[0]
# percentage of missing
ratio_missing = count_missing/total
# return a dataframe to show: feature name, # of missing and % of missing
return pd.DataFrame(data={'missing_count':count_missing, 'missing_ratio':ratio_missing},
index=data.columns.values)
find_missing(data_final).head(5)
What I want to do is to only print those columns where there is a missing value as I have a huge data set of about 150 columns.
The data set looks like this
A B C D
123 ABC X Y
123 ABC X Y
NaN ABC NaN NaN
123 ABC NaN NaN
245 ABC NaN NaN
345 ABC NaN NaN
In the output I would just want to see :
missing_count missing_ratio
C 4 0.66
D 4 0.66
and not the columns A and B as there are no missing values there
Use DataFrame.isna with DataFrame.sum
to count by columns. We can also use DataFrame.isnull instead DataFrame.isna.
new_df = (df.isna()
.sum()
.to_frame('missing_count')
.assign(missing_ratio = lambda x: x['missing_count']/len(df))
.loc[df.isna().any()] )
print(new_df)
We can also use pd.concat instead DataFrame.assign
count = df.isna().sum()
new_df = (pd.concat([count.rename('missing_count'),
count.div(len(df))
.rename('missing_ratio')],axis = 1)
.loc[count.ne(0)])
Output
missing_count missing_ratio
A 1 0.166667
C 4 0.666667
D 4 0.666667
IIUC, we can assign the missing and total count to two variables do some basic math and assign back to a df.
a = df.isnull().sum(axis=0)
b = np.round(df.isnull().sum(axis=0) / df.fillna(0).count(axis=0),2)
missing_df = pd.DataFrame({'missing_vals' : a,
'missing_ratio' : b})
print(missing_df)
missing_vals ratio
A 1 0.17
B 0 0.00
C 4 0.67
D 4 0.67
you can filter out columns that don't have any missing vals
missing_df = missing_df[missing_df.missing_vals.ne(0)]
print(missing_df)
missing_vals ratio
A 1 0.17
C 4 0.67
D 4 0.67
You can also use concat:
s = df.isnull().sum()
result = pd.concat([s,s/len(df)],1)
result.columns = ["missing_count","missing_ratio"]
print (result)
missing_count missing_ratio
A 1 0.166667
B 0 0.000000
C 4 0.666667
D 4 0.666667
How can one idiomatically run a function like get_dummies, which expects a single column and returns several, on multiple DataFrame columns?
With pandas 0.19, you can do that in a single line :
pd.get_dummies(data=df, columns=['A', 'B'])
Columns specifies where to do the One Hot Encoding.
>>> df
A B C
0 a c 1
1 b c 2
2 a b 3
>>> pd.get_dummies(data=df, columns=['A', 'B'])
C A_a A_b B_b B_c
0 1 1.0 0.0 0.0 1.0
1 2 0.0 1.0 0.0 1.0
2 3 1.0 0.0 1.0 0.0
Since pandas version 0.15.0, pd.get_dummies can handle a DataFrame directly (before that, it could only handle a single Series, and see below for the workaround):
In [1]: df = DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
...: 'C': [1, 2, 3]})
In [2]: df
Out[2]:
A B C
0 a c 1
1 b c 2
2 a b 3
In [3]: pd.get_dummies(df)
Out[3]:
C A_a A_b B_b B_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0
Workaround for pandas < 0.15.0
You can do it for each column seperate and then concat the results:
In [111]: df
Out[111]:
A B
0 a x
1 a y
2 b z
3 b x
4 c x
5 a y
6 b y
7 c z
In [112]: pd.concat([pd.get_dummies(df[col]) for col in df], axis=1, keys=df.columns)
Out[112]:
A B
a b c x y z
0 1 0 0 1 0 0
1 1 0 0 0 1 0
2 0 1 0 0 0 1
3 0 1 0 1 0 0
4 0 0 1 1 0 0
5 1 0 0 0 1 0
6 0 1 0 0 1 0
7 0 0 1 0 0 1
If you don't want the multi-index column, then remove the keys=.. from the concat function call.
Somebody may have something more clever, but here are two approaches. Assuming you have a dataframe named df with columns 'Name' and 'Year' you want dummies for.
First, simply iterating over the columns isn't too bad:
In [93]: for column in ['Name', 'Year']:
...: dummies = pd.get_dummies(df[column])
...: df[dummies.columns] = dummies
Another idea would be to use the patsy package, which is designed to construct data matrices from R-type formulas.
In [94]: patsy.dmatrix(' ~ C(Name) + C(Year)', df, return_type="dataframe")
Unless I don't understand the question, it is supported natively in get_dummies by passing the columns argument.
The simple trick I am currently using is a for-loop.
First separate categorical data from Data Frame by using select_dtypes(include="object"),
then by using for loop apply get_dummies to each column iteratively
as I have shown in code below:
train_cate=train_data.select_dtypes(include="object")
test_cate=test_data.select_dtypes(include="object")
# vectorize catagorical data
for col in train_cate:
cate1=pd.get_dummies(train_cate[col])
train_cate[cate1.columns]=cate1
cate2=pd.get_dummies(test_cate[col])
test_cate[cate2.columns]=cate2
In a pandas dataframe, I have a string column with multiple values and I want to replace it one with based on a match for different rows.
Eg - Based on image, I want to specify "Extreme progressive,Progressive rock,Progressive" as Progressive, "Heavy,Bay area thrash" as Thrash, "Progressive death,Death,Progressive thrash" as Death and so on. How should I proceed with executing the same?
Using a dataframe:
dfa:
ID No Time Variable Val
0 123 0.1 A 1
1 123 0.1 B 2
2 123 0.1 C 3
3 127 0.8 A 4
4 127 0.8 B 5
5 127 0.8 C 6
you can create a dict mapper:
dictMapper = {'A' : 'aye', 'B': 'bee'}
dfa['Variable'] = dfa['Variable'].map(lambda x: dictMapper.get(x,x))
dfa:
ID No Time Variable Val
0 123 0.1 aye 1
1 123 0.1 bee 2
2 123 0.1 C 3
3 127 0.8 aye 4
4 127 0.8 bee 5
5 127 0.8 C 6
This ofcourse relies on you knowing all before: after combinations before updating your dataframe as you'll need an exact match to the dict keys.
I am trying to write a function that will check a specified column for nulls, within a group in a dataframe. The example dataframe has two columns, ID and VALUE. Multiple rows exist per ID. I want to know if ANY of the rows for a particular ID have a NULL value in VALUE.
I have tried building the function with iterrows().
df = pd.DataFrame({'ID':[1,2,2,3,3,3],
'VALUE':[50,None,30,20,10,None]})
def nullValue(col):
for i, row in col.iterrows():
if ['VALUE'] is None:
return 1
else:
return 0
df2 = df.groupby('ID').apply(nullVALUE)
df2.columns = ['ID','VALUE','isNULL']
df2
I am expecting to retrieve a dataframe with three columns, ID, VALUE, and isNULL. If any row in a grouped ID has a null, all of the rows for that ID should have a 1 under isNull.
Example:
ID VALUE isNULL
1 50.0 0
2 NaN 1
2 30.0 1
3 20.0 1
3 10.0 1
3 NaN 1
A quick solution, borrowed partially from this answer is to use groupby with transform:
df = pd.DataFrame({'ID':[1,2,2,3,3,3,3],
'VALUE':[50,None,None,30,20,10,None]})
df['isNULL'] = (df.VALUE.isnull().groupby([df['ID']]).transform('sum') > 0).astype(int)
Out[51]:
ID VALUE isNULL
0 1 50.0 0
1 2 NaN 1
2 2 NaN 1
3 3 30.0 1
4 3 20.0 1
5 3 10.0 1
6 3 NaN 1
I have a dataframe that contains nan values in particular column. while iterating through the rows, if it come across nan(using isnan() method) then I need to change it to some other value(since I have some conditions). I tried using replace() and fillna() with limit parameter also but they are modifying whole column when they come across the first nan value? Is there any method that I can assign value to specific nan rather than changing all the values of a column?
Example: the dataframe looks like it:
points sundar cate king varun vicky john charlie target_class
1 x2 5 'cat' 4 10 3 2 1 NaN
2 x3 3 'cat' 1 2 3 1 1 NaN
3 x4 6 'lion' 8 4 3 7 1 NaN
4 x5 4 'lion' 1 1 3 1 1 NaN
5 x6 8 'cat' 10 10 9 7 1 0.0
an I have a list like
a = [1.0, 0.0]
and I expect to be like
points sundar cate king varun vicky john charlie target_class
1 x2 5 'cat' 4 10 3 2 1 1.0
2 x3 3 'cat' 1 2 3 1 1 1.0
3 x4 6 'lion' 8 4 3 7 1 1.0
4 x5 4 'lion' 1 1 3 1 1 0.0
5 x6 8 'cat' 10 10 9 7 1 0.0
I wanted to change the target_class values based on some conditions and assign values of the above list.
I believe need replace NaNs values to 1 only for indexes specified in list idx:
mask = df['target_class'].isnull()
idx = [1,2,3]
df.loc[mask, 'target_class'] = df[mask].index.isin(idx).astype(int)
print (df)
points sundar cate king varun vicky john charlie target_class
1 x2 5 'cat' 4 10 3 2 1 1.0
2 x3 3 'cat' 1 2 3 1 1 1.0
3 x4 6 'lion' 8 4 3 7 1 1.0
4 x5 4 'lion' 1 1 3 1 1 0.0
5 x6 8 'cat' 10 10 9 7 1 0.0
Or:
idx = [1,2,3]
s = pd.Series(df.index.isin(idx).astype(int), index=df.index)
df['target_class'] = df['target_class'].fillna(s)
EDIT:
From comments solution is assign values by index and columns values with DataFrame.loc:
df2.loc['x2', 'target_class'] = list1[0]
I suppose your conditions for imputing the nan values does not depend on the number of them in a column. In the code below I stored all the imputation rules in one function that receives as parameters the entire row (containing the nan) and the column you are investigating for. If you also need all the dataframe for the imputation rules, just pass it through the replace_nan function. In the example I imputate the col element with the mean values of the other columns.
import pandas as pd
import numpy as np
def replace_nan(row, col):
row[col] = row.drop(col).mean()
return row
df = pd.DataFrame(np.random.rand(5,3), columns = ['col1', 'col2', 'col3'])
col_to_impute = 'col1'
df.loc[[1, 3], col_to_impute] = np.nan
df = df.apply(lambda x: replace_nan(x, col_to_impute) if np.isnan(x[col_to_impute]) else x, axis=1)
The only thing that you should do is making the right assignation. That is, make an assignation in the rows that contain nulls.
Example dataset:
,event_id,type,timestamp,label
0,asd12e,click,12322232,0.0
1,asj123,click,212312312,0.0
2,asd321,touch,12312323,0.0
3,asdas3,click,33332233,
4,sdsaa3,touch,33211333,
Note: The last two rows contains nulls in column: 'label'. Then, we load the dataset:
df = pd.read_csv('dataset.csv')
Now, we make the appropiate condition:
cond = df['label'].isnull()
Now, we make the assignation over these rows (I don't know the logical of assignation. Therefore I assign 1 value to NaN's):
df1.loc[cond,'label'] = 1
There are another more accurate approaches. fillna() method could be used. You should provide the logical in order to help you.