Joining 2 tables in pyspark, multiple conditions, left join? - apache-spark

I have 2 tables like below. My code below is joining 2 tables (left join). The problem is I have to do the same join twice. The first join is happening on log_no and LogNumber which returns all records from the left table (table1), and the matched records from the right table (table2). The second join is doing the same thing but on the substring of log_no with LogNumber. for example, 777 will match with 777 from table 2, 777-A there is no match but when using a substring function 777-A becomes 777 which will be matched in table 2.
Instead of creating 2 separate joins like below, how can I cover both scenarios with one join instead. Code below:
# first join to match 1234-A (table 1) with 1234-A (table 2)
df5 = df5.join(df_app, trim(df5.LOG_NO) == trim(df_app.LogNumber), "left")\
.select (df5["*"], df_app["ApplicationId"])
df5 = df5.withColumnRenamed("ApplicationId","ApplicationId_1")
# second join with substring function, to match 777-C with 777,
# my string is longer than my examples, this is why I have a substring for the first 8 characters. I provided simple examples.
df5 = df5.join(df_app, substring(trim(df5.LOG_NO), 1, 8) == trim(df_app.LogNumber), "left")\
.select (df5["*"], df_app["ApplicationId"])
df5 = df5.withColumnRenamed("ApplicationId","ApplicationId_2")

You can combine the two join conditions using a bitwise OR:
df5 = df5.join(df_app,
(trim(df5.LOG_NO) == trim(df_app.LogNumber)) |
(substring(trim(df5.LOG_NO), 1, 8) == trim(df_app.LogNumber)),
"left") \
.select(df5["*"], df_app["ApplicationId"])

Related

PySpark data skewness with Window Functions

I have a huge PySpark dataframe and I'm doing a series of Window functions over partitions defined by my key.
The issue with the key is, my partitions gets skewed by this and results in Event Timeline that looks something like this,
I know that I can use salting technique to solve this issue when I'm doing a join. But how can I solve this issue when I'm using Window functions?
I'm using functions like lag, lead etc in the Window functions. I can't do the process with salted key, because I'll get wrong results.
How to solve skewness in this case?
I'm looking for a dynamic way of repartitioning my dataframe without skewness.
Updates based on answer from #jxc
I tried creating a sample df and tried running code over that,
df = pd.DataFrame()
df['id'] = np.random.randint(1, 1000, size=150000)
df['id'] = df['id'].map(lambda x: 100 if x % 2 == 0 else x)
df['timestamp'] = pd.date_range(start=pd.Timestamp('2020-01-01'), periods=len(df), freq='60s')
sdf = sc.createDataFrame(df)
sdf = sdf.withColumn("amt", F.rand()*100)
w = Window.partitionBy("id").orderBy("timestamp")
sdf = sdf.withColumn("new_col", F.lag("amt").over(w) + F.lead("amt").over(w))
x = sdf.toPandas()
This gave me a event timeline like this,
I tried the code from #jxc's answer,
sdf = sc.createDataFrame(df)
sdf = sdf.withColumn("amt", F.rand()*100)
N = 24*3600*365*2
sdf_1 = sdf.withColumn('pid', F.ceil(F.unix_timestamp('timestamp')/N))
w1 = Window.partitionBy('id', 'pid').orderBy('timestamp')
w2 = Window.partitionBy('id', 'pid')
sdf_2 = sdf_1.select(
'*',
F.count('*').over(w2).alias('cnt'),
F.row_number().over(w1).alias('rn'),
(F.lag('amt',1).over(w1) + F.lead('amt',1).over(w1)).alias('new_val')
)
sdf_3 = sdf_2.filter('rn in (1, 2, cnt-1, cnt)') \
.withColumn('new_val', F.lag('amt',1).over(w) + F.lead('amt',1).over(w)) \
.filter('rn in (1,cnt)')
df_new = sdf_2.filter('rn not in (1,cnt)').union(sdf_3)
x = df_new.toPandas()
I ended up one additional stage and the event timeline looked more skewed,
Also the run time is increased by a bit with new code
To process a large partition, you can try split it based on the orderBy column(most likely a numeric column or date/timestamp column which can be converted into numeric) so that all new sub-partitions maintain the correct order of rows. process rows with the new partitioner and for calculation using lag and lead functions, only rows around the boundary between sub-partitions need to be post-processed. (Below also discussed how to merge small partitions in task-2)
Use your example sdf and assume we have the following WinSpec and a simple aggregate function:
w = Window.partitionBy('id').orderBy('timestamp')
df.withColumn('new_amt', F.lag('amt',1).over(w) + F.lead('amt',1).over(w))
Task-1: split large partitions:
Try the following:
select a N to split timestamp and set up an additional partitionBy column pid (using ceil, int, floor etc.):
# N to cover 35-days' intervals
N = 24*3600*35
df1 = sdf.withColumn('pid', F.ceil(F.unix_timestamp('timestamp')/N))
add pid into partitionBy(see w1), then calaulte row_number(), lag() and lead() over w1. find also number of rows (cnt) in each new partition to help identify the end of partitions (rn == cnt). the resulting new_val will be fine for majority of rows except those on the boundaries of each partition.
w1 = Window.partitionBy('id', 'pid').orderBy('timestamp')
w2 = Window.partitionBy('id', 'pid')
df2 = df1.select(
'*',
F.count('*').over(w2).alias('cnt'),
F.row_number().over(w1).alias('rn'),
(F.lag('amt',1).over(w1) + F.lead('amt',1).over(w1)).alias('new_amt')
)
Below is an example df2 showing the boundary rows.
process the boundary: select rows which are on the boundaries rn in (1, cnt) plus those which have values used in the calculation rn in (2, cnt-1), do the same calculation of new_val over w and save result for boundary rows only.
df3 = df2.filter('rn in (1, 2, cnt-1, cnt)') \
.withColumn('new_amt', F.lag('amt',1).over(w) + F.lead('amt',1).over(w)) \
.filter('rn in (1,cnt)')
Below shows the resulting df3 from the above df2
merge df3 back to df2 to update boundary rows rn in (1,cnt)
df_new = df2.filter('rn not in (1,cnt)').union(df3)
Below screenshot shows the final df_new around the boundary rows:
# drop columns which are used to implement logic only
df_new = df_new.drop('cnt', 'rn')
Some Notes:
the following 3 WindowSpec are defined:
w = Window.partitionBy('id').orderBy('timestamp') <-- fix boundary rows
w1 = Window.partitionBy('id', 'pid').orderBy('timestamp') <-- calculate internal rows
w2 = Window.partitionBy('id', 'pid') <-- find #rows in a partition
note: strictly, we'd better use the following w to fix boundary rows to avoid issues with tied timestamp around the boundaries.
w = Window.partitionBy('id').orderBy('pid', 'rn') <-- fix boundary rows
if you know which partitions are skewed, just divide them and skip others. the existing method might split a small partition into 2 or even more if they are sparsely distributed
df1 = df.withColumn('pid', F.when(F.col('id').isin('a','b'), F.ceil(F.unix_timestamp('timestamp')/N)).otherwise(1))
If for each partition, you can retrieve count(number of rows) and min_ts=min(timestamp), then try something more dynamically for pid(below M is the threshold number of rows to split):
F.expr(f"IF(count>{M}, ceil((unix_timestamp(timestamp)-unix_timestamp(min_ts))/{N}), 1)")
note: for skewness inside a partition, will requires more complex functions to generate pid.
if only lag(1) function is used, just post-process left boundaries, filter by rn in (1, cnt) and update only rn == 1
df3 = df1.filter('rn in (1, cnt)') \
.withColumn('new_amt', F.lag('amt',1).over(w)) \
.filter('rn = 1')
similar to lead function when we need only to fix right boundaries and update rn == cnt
if only lag(2) is used, then filter and update more rows with df3:
df3 = df1.filter('rn in (1, 2, cnt-1, cnt)') \
.withColumn('new_amt', F.lag('amt',2).over(w)) \
.filter('rn in (1,2)')
You can extend the same method to mixed cases with both lag and lead having different offset.
Task-2: merge small partitions:
Based on the number of records in a partition count, we can set up an threshold M so that if count>M, the id holds its own partition, otherwise we merge partitions so that #of total records is less than M (below method has a edging case of 2*M-2).
M = 20000
# create pandas df with columns `id`, `count` and `f`, sort rows so that rows with count>=M are located on top
d2 = pd.DataFrame([ e.asDict() for e in sdf.groupby('id').count().collect() ]) \
.assign(f=lambda x: x['count'].lt(M)) \
.sort_values('f')
# add pid column to merge smaller partitions but the total row-count in partition should be less than or around M
# potentially there could be at most `2*M-2` records for the same pid, to make sure strictly count<M, use a for-loop to iterate d1 and set pid:
d2['pid'] = (d2.mask(d2['count'].gt(M),M)['count'].shift(fill_value=0).cumsum()/M).astype(int)
# add pid to sdf. In case join is too heavy, try using Map
sdf_1 = sdf.join(spark.createDataFrame(d2).alias('d2'), ["id"]) \
.select(sdf["*"], F.col("d2.pid"))
# check pid: # of records and # of distinct ids
sdf_1.groupby('pid').agg(F.count('*').alias('count'), F.countDistinct('id').alias('cnt_ids')).orderBy('pid').show()
+---+-----+-------+
|pid|count|cnt_ids|
+---+-----+-------+
| 0|74837| 1|
| 1|20036| 133|
| 2|20052| 134|
| 3|20010| 133|
| 4|15065| 100|
+---+-----+-------+
Now, the new Window should be partitioned by pid alone and move id to orderBy, see below:
w3 = Window.partitionBy('pid').orderBy('id','timestamp')
customize lag/lead functions based on the above w3 WinSpec, and then calculate new_val:
lag_w3 = lambda col,n=1: F.when(F.lag('id',n).over(w3) == F.col('id'), F.lag(col,n).over(w3))
lead_w3 = lambda col,n=1: F.when(F.lead('id',n).over(w3) == F.col('id'), F.lead(col,n).over(w3))
sdf_new = sdf_1.withColumn('new_val', lag_w3('amt',1) + lead_w3('amt',1))
To handle such skewed data, there are a couple of things you can try out.
If you are using Databricks to run your jobs and you know which column will have the skew then you can try out an option called skew hint
I recommend moving to Spark 3.0 since you will have the option to use Adaptive Query Execution (AQE) which can handle most of the issues improving your job health and potentially running them faster.
Usually, I suggest making your data more even-sized partitions before any wide operation, and Increasing the cluster size does help but I am not sure if this will work for you.

Spark joins performance issue

I'm trying to merge historical and incremental data. As part of the incremental data, I'm getting deletes. Below is the case.
historical data - 100 records ( 20 columns, id is the key column)
incremental data - 10 records ( 20 columns, id is the key column)
Out of the 10 records in incremental data, only 5 will match with historical data.
Now I want 100 records in the final dataframe of which 95 records belong to historical data and 5 records belong to incremental data(wherever id column is match).
Update timestamp field is available in both historical and incremental data.
Below is the approach I tried.
DF1 - Historical Data
DF2 - Incremental Delete Dataset
DF3 = DF1 LEFTANTIJOIN DF2
DF4 = DF2 INNERJOIN DF1
DF5 = DF3 UNION DF4
However, I observed It has lot of performance issue as I'm running this join on billions of records. Any better way to do this?
you can use the cogroup operator combined with a user defined function to construct the different variations of the join.
Suppose we have these two RDDs as an example :
visits = sc.parallelize([("h", "1.2.3.4"), ("a", "3.4.5.6"), ("h","1.3.3.1")] )
pageNames = sc.parallelize([("h", "Home"), ("a", "About"), ("o", "Other")])
cg = visits.cogroup(pageNames).map(lambda x :(x[0], ( list(x[1][0]), list(x[1][1]))))
You can implement an inner join as such :
innerjoin = cg.flatMap(lambda x: J(x))
Where J is defined as such :
def J(x):
j=[]
k=x[0]
if x[1][0]!=[] and x[1][1]!=[]:
for l in x[1][0]:
for r in x[1][1]:
j.append((k,(l,r)))
return j
For a right outer join for example you just need to change the J function to an roJ function defined as such :
def roJ(x):
j=[]
k=x[0]
if x[1][0]!=[] and x[1][1]!=[]:
for l in x[1][0]:
for r in x[1][1]:
j.append((k,(l,r)))
elif x[1][1]!=[] :
for r in x[1][1]:
j.append((k, (None, r)))
return j
And call it like so :
rightouterjoin = cg.flatMap(lambda x: roJ(x))
And so on for other types of join you'd wish to implement
Performance issues are not just related to the size of your data. It depends on many other parameters like, the keys you used for partition, your partitioned file sizes and the cluster configuration you are running your job on. I would recommend you to go through the official documentation on Tuning your spark jobs and make necessary changes.
https://spark.apache.org/docs/latest/tuning.html
Below is the approach I did.
historical_data.as("a").join(
incr_data.as("b"),
$"a.id" === $"b.id", "full")
.select(historical_data.columns.map(f => expr(s"""case when a.id=b.id then b.${f} else a.${f} end as $f""")): _*)

How to do multiple types of joins together on 4 data frames in pandas

I have 4 dataframes to which I apply inner join and left joins .
I am trying to rewrite the query in python.How can we do all the joins together at a time in pandas code.
SQL
select hd.order_no,hd.order_id,hd.ship_country,User.LT_ID,User.DEST_REGION,Auto.m0_act_0400,Auto.m0_act_0500
FROM
header hd
INNER JOIN key ky ON (hd.order_no = ky.order_no)
LEFT JOIN User lt on (ky.lt_id = lt.lt_id)
LEFT JOIN Auto a on (hd.order_id = a.order_id )
*
How can this be done in pandas easily.
You can try this:
(header.merge(Key,
left_on='order_no',
right_on='ORDER_NO', # pandas/python cares about cases
how='inner') # how='inner' is default so can be skipped
.merge(User, on='LT_ID', how='left') # chaining merge
.merge(Auto, on='order_id', how='left')
[['order_no', 'order_id', 'ship_country', # select the columns
'LT_ID', 'DEST_REGION', 'm0_act_0400', 'm0_act_0500']]
)
For details about merge see this question.

Scala How to Find All Unique Values from a Specific Column in a CSV?

I am using Scala to read from a csv file. The file is formatted to have 3 columns each separated by a \t character. The first 2 columns are unimportant and the third column contains a list of comma separated identifiers stored as as strings. Below is a sample of what the input csv would look like:
0002ba73 US 6o7,6on,6qc,6qj,6nw,6ov,6oj,6oi,15me,6pb,6p9
002f50e4 US 6om,6pb,6p8,15m9,6ok,6ov,6qc,6oo,15me
004b5edc US 6oj,6nz,6on,6om,6qc,6ql,6p6,15me
005cc990 US 6pb,6qf,15me,6og,6nx,6qc,6om,6ok
005fe1ea US 15me,6p0,6ql,6ok,6ox,6ol,6o5,6qj
00777555 US 6pb,15me,6nw,6rk,6qc,6ov,6qj,6o0,6oj,6ok,6on,6p6,6nx,15m9
00cbcc7d US 6oj,6qc,6qg,6pb,6ol,6p6,6ov,15me
010254a6 US 6qc,6pb,6nw,6nx,15me,6o0,6ok,6p8
011b905c US 6oj,6nw,6ov,15me,6qc,6ow,6ql,6on,6qi,6qe
011fffa6 US 15me,6ok,6oj,6p6,6pb,6on,6qc,6ov,6oo,6nw,6oc
I want to read in the csv, get rid of the first two columns, and create a List that contains one instance of each unique identifier code found in the third column, so running the code on the above data should return the result List(6on, 6qc, 6qj, 6nw, 6ov, 6oj, 6oi, 15me, 6pb, 6p9, 6p8, 15m9, 6ok, 6oo, 6nz, 6om, 6ql, 6p6, 6qf, 6og, 6nx, 6p0, 6ox, 6ol, 6o5, 6rk, 6o0, 6qg, 6ow, 6qi, 6qe, 6oc)
I have the following code which returns a List containing every distinct value found anywhere in the csv file:
val in_file = new File("input_file.csv")
val source = scala.io.Source.fromFile(in_file, "utf-8")
val labels = try source.getLines.mkString("\t") finally source.close()
val labelsList: List[String] = labels.split("[,\t]").map(_.trim).toList.distinct
Using the above input, my code returns labelsList with a value of List(0002ba73-e60c-4ffb-9131-c1612b904658, US, 6o7, 6on, 6qc, 6qj, 6nw, 6ov, 6oj, 6oi, 15me, 6pb, 6p9, 002f50e4-48cc-4b14-bb80-0502068b6161, 6om, 6p8, 15m9, 6ok, 6oo, 004b5edc-c0cc-4ffd-bef3-980bd92b92e6, 6nz, 6ql, 6p6, 005cc990-83dc-4e63-a4b6-58f38241e8fd, 6qf, 6og, 6nx, 005fe1ea-b918-48a3-a495-1f8ac12935ba, 6p0, 6ox, 6ol, 6o5, 00777555-83d4-401e-861b-5892f3aa3e1c, 6rk, 6o0, 00cbcc7d-1b48-4c5c-8141-8fc8f62b7b07, 6qg, 010254a6-2ef0-4a24-aa4d-3cc6656a55de, 011b905c-fbf3-441a-8912-a94cc0fe8a1d, 6ow, 6qi, 6qe, 011fffa6-0b9f-4d88-8ced-ce1cc864984f, 6oc)
How can I get my code to run properly and ignore anything contained within the first 2 columns of the csv?
You can ignore the first two columns and then split the third by the comma.
Finally a toSet will get rid of the duplicate identifiers.
val f = Source.fromFile("input_file.csv")
val lastColumns = f.getLines().map(_.split("\t")(2))
val uniques = lastColumns.flatMap(_.split(",")).toSet
uniques foreach println
Using Scala 2.13 resource management.
util.Using(io.Source.fromFile("input_file.csv")){
_.getLines()
.foldLeft(Array.empty[String]){
_ ++ _.split("\t")(2).split(",")
}.distinct.toList
}
//res0: scala.util.Try[List[String]] =
// Success(List(6o7, 6on, 6qc, 6qj, 6nw, 6ov, 6oj, 6oi, 15me, 6pb, 6p9, 6om, 6p8, 15m9, 6ok, 6oo, 6nz, 6ql, 6p6, 6qf, 6og, 6nx, 6p0, 6ox, 6ol, 6o5, 6rk, 6o0, 6qg, 6ow, 6qi, 6qe, 6oc))
The .toList can be dropped if an Array result is acceptable.
This is what you can do , Am doing on a sample DF, you can replace with yours
val Df = Seq(("7369", "SMITH" , "2010-12-17", "800.00"), ("7499", "ALLEN","2011-02-20", "1600.00")).toDF("empno", "ename","hire_date", "sal")
val reqCols = Seq(2)
val finalDf = Df.select(reqCols map Df.columns map col: _*)
finalDf.show
Note : This is 0-based index, so pass 2 to get third column.
If you want distinct values from your desired column.you can use distinct along with mkstring
val Df = Seq(("7369", "SMITH" , "2010-12-17", "800.00"), ("7499", "ALLEN","2011-02-20", "1600.00"), ("7499", "ALLEN","2011-02-20", "1600.00")).toDF("empno", "ename","hire_date", "sal")
val reqCols = Seq(2)
val distinctValues = Df.select(reqCols map Df.columns map col: _*).distinct.collect.mkString(",").filterNot("[]".toSet)
println(distinctValues)
Dates are duplicate , above code is removing duplicates.
Another method using regex
val data = scala.io.Source.fromFile("source.txt").getLines()
data.toList.flatMap {
line => """\S+\s+\S+\s+(\S+)""".r.findAllMatchIn(line).map( x => x.group(1).split(",").toList)
}.flatten.distinct
// res0: List[String] = List(6o7, 6on, 6qc, 6qj, 6nw, 6ov, 6oj, 6oi, 15me, 6pb, 6p9, 6om, 6p8, 15m9, 6ok, 6oo, 6nz, 6ql, 6p6, 6qf, 6og, 6nx, 6p0, 6ox, 6ol, 6o5, 6rk, 6o0, 6qg, 6ow, 6qi, 6qe, 6oc)

How to loop through each row of dataFrame in pyspark

E.g
sqlContext = SQLContext(sc)
sample=sqlContext.sql("select Name ,age ,city from user")
sample.show()
The above statement prints theentire table on terminal. But I want to access each row in that table using for or while to perform further calculations.
You simply cannot. DataFrames, same as other distributed data structures, are not iterable and can be accessed using only dedicated higher order function and / or SQL methods.
You can of course collect
for row in df.rdd.collect():
do_something(row)
or convert toLocalIterator
for row in df.rdd.toLocalIterator():
do_something(row)
and iterate locally as shown above, but it beats all purpose of using Spark.
To "loop" and take advantage of Spark's parallel computation framework, you could define a custom function and use map.
def customFunction(row):
return (row.name, row.age, row.city)
sample2 = sample.rdd.map(customFunction)
or
sample2 = sample.rdd.map(lambda x: (x.name, x.age, x.city))
The custom function would then be applied to every row of the dataframe. Note that sample2 will be a RDD, not a dataframe.
Map may be needed if you are going to perform more complex computations. If you just need to add a simple derived column, you can use the withColumn, with returns a dataframe.
sample3 = sample.withColumn('age2', sample.age + 2)
Using list comprehensions in python, you can collect an entire column of values into a list using just two lines:
df = sqlContext.sql("show tables in default")
tableList = [x["tableName"] for x in df.rdd.collect()]
In the above example, we return a list of tables in database 'default', but the same can be adapted by replacing the query used in sql().
Or more abbreviated:
tableList = [x["tableName"] for x in sqlContext.sql("show tables in default").rdd.collect()]
And for your example of three columns, we can create a list of dictionaries, and then iterate through them in a for loop.
sql_text = "select name, age, city from user"
tupleList = [{name:x["name"], age:x["age"], city:x["city"]}
for x in sqlContext.sql(sql_text).rdd.collect()]
for row in tupleList:
print("{} is a {} year old from {}".format(
row["name"],
row["age"],
row["city"]))
It might not be the best practice, but you can simply target a specific column using collect(), export it as a list of Rows, and loop through the list.
Assume this is your df:
+----------+----------+-------------------+-----------+-----------+------------------+
| Date| New_Date| New_Timestamp|date_sub_10|date_add_10|time_diff_from_now|
+----------+----------+-------------------+-----------+-----------+------------------+
|2020-09-23|2020-09-23|2020-09-23 00:00:00| 2020-09-13| 2020-10-03| 51148 |
|2020-09-24|2020-09-24|2020-09-24 00:00:00| 2020-09-14| 2020-10-04| -35252 |
|2020-01-25|2020-01-25|2020-01-25 00:00:00| 2020-01-15| 2020-02-04| 20963548 |
|2020-01-11|2020-01-11|2020-01-11 00:00:00| 2020-01-01| 2020-01-21| 22173148 |
+----------+----------+-------------------+-----------+-----------+------------------+
to loop through rows in Date column:
rows = df3.select('Date').collect()
final_list = []
for i in rows:
final_list.append(i[0])
print(final_list)
Give A Try Like this
result = spark.createDataFrame([('SpeciesId','int'), ('SpeciesName','string')],["col_name", "data_type"]);
for f in result.collect():
print (f.col_name)
If you want to do something to each row in a DataFrame object, use map. This will allow you to perform further calculations on each row. It's the equivalent of looping across the entire dataset from 0 to len(dataset)-1.
Note that this will return a PipelinedRDD, not a DataFrame.
above
tupleList = [{name:x["name"], age:x["age"], city:x["city"]}
should be
tupleList = [{'name':x["name"], 'age':x["age"], 'city':x["city"]}
for name, age, and city are not variables but simply keys of the dictionary.

Resources