How can I pass "number variable" in function as reference in python? - python-3.x

For better understanding here is a example code.
num = 0
def func(num):
num += 1
func(num)
print(num)
This code prints 0 but I want 1(incremented by func()), how can I do that?
How can I do that? Is it possible?

Long story short, you can't just put number in function and expect it to be passed by reference.
In python...
(act like) pass by value : whole numbers, strings or tuples
(act like) pass by reference : python list
You should visit here for more info about "Pass(call) by Object Reference".
https://www.geeksforgeeks.org/is-python-call-by-reference-or-call-by-value/

In python, when you declare a variable inside a function, python treats it as a new variable. That means, any changes to that variable doesnt show up Globally.
To go through his, add global to the top.
Example:
num = 0
def func():
global num
num += 1
func()
print(num)
Output:
1

Related

Why along with output it is showing NONE each time? [duplicate]

What does the return statement do? How should it be used in Python?
How does return differ from print?
See also
Often, people try to use print in a loop inside a function in order to see multiple values, and want to be able to use the results from outside. They need to be returned, but return exits the function the first time. See How can I use `return` to get back multiple values from a loop? Can I put them in a list?.
Often, beginners will write a function that ultimately prints something rather than returning it, and then also try to print the result, resulting in an unexpected None. See Why is "None" printed after my function's output?.
Occasionally in 3.x, people try to assign the result of print to a name, or use it in another expression, like input(print('prompt:')). In 3.x, print is a function, so this is not a syntax error, but it returns None rather than what was displayed. See Why does the print function return None?.
Occasionally, people write code that tries to print the result from a recursive call, rather than returning it properly. Just as if the function were merely called, this does not work to propagate the value back through the recursion. See Why does my recursive function return None?.
Consider How do I get a result (output) from a function? How can I use the result later? for questions that are simply about how to use return, without considering print.
The print() function writes, i.e., "prints", a string in the console. The return statement causes your function to exit and hand back a value to its caller. The point of functions in general is to take in inputs and return something. The return statement is used when a function is ready to return a value to its caller.
For example, here's a function utilizing both print() and return:
def foo():
print("hello from inside of foo")
return 1
Now you can run code that calls foo, like so:
if __name__ == '__main__':
print("going to call foo")
x = foo()
print("called foo")
print("foo returned " + str(x))
If you run this as a script (e.g. a .py file) as opposed to in the Python interpreter, you will get the following output:
going to call foo
hello from inside foo
called foo
foo returned 1
I hope this makes it clearer. The interpreter writes return values to the console so I can see why somebody could be confused.
Here's another example from the interpreter that demonstrates that:
>>> def foo():
... print("hello within foo")
... return 1
...
>>> foo()
hello within foo
1
>>> def bar():
... return 10 * foo()
...
>>> bar()
hello within foo
10
You can see that when foo() is called from bar(), 1 isn't written to the console. Instead it is used to calculate the value returned from bar().
print() is a function that causes a side effect (it writes a string in the console), but execution resumes with the next statement. return causes the function to stop executing and hand a value back to whatever called it.
Think of the print statement as causing a side-effect, it makes your function write some text out to the user, but it can't be used by another function.
I'll attempt to explain this better with some examples, and a couple definitions from Wikipedia.
Here is the definition of a function from Wikipedia
A function, in mathematics, associates one quantity, the argument of the function, also known as the input, with another quantity, the value of the function, also known as the output..
Think about that for a second. What does it mean when you say the function has a value?
What it means is that you can actually substitute the value of a function with a normal value! (Assuming the two values are the same type of value)
Why would you want that you ask?
What about other functions that may accept the same type of value as an input?
def square(n):
return n * n
def add_one(n):
return n + 1
print square(12)
# square(12) is the same as writing 144
print add_one(square(12))
print add_one(144)
#These both have the same output
There is a fancy mathematical term for functions that only depend on their inputs to produce their outputs: Referential Transparency. Again, a definition from Wikipedia.
Referential transparency and referential opaqueness are properties of parts of computer programs. An expression is said to be referentially transparent if it can be replaced with its value without changing the behavior of a program
It might be a bit hard to grasp what this means if you're just new to programming, but I think you will get it after some experimentation.
In general though, you can do things like print in a function, and you can also have a return statement at the end.
Just remember that when you use return you are basically saying "A call to this function is the same as writing the value that gets returned"
Python will actually insert a return value for you if you decline to put in your own, it's called "None", and it's a special type that simply means nothing, or null.
I think the dictionary is your best reference here
Return and Print
In short:
return gives something back or replies to the caller of the function while print produces text
In python, we start defining a function with def, and generally - but not necessarily - end the function with return.
Suppose we want a function that adds 2 to the input value x. In mathematics, we might write something like f(x) = x + 2, describing that relationship: the value of the function, evaluated at x, is equal to x + 2.
In Python, it looks like this instead:
def f(x):
return x + 2
That is: we define a function named f, which will be given an x value. When the code runs we figure out x + 2, and return that value. Instead of describing a relationship, we lay out steps that must be taken to calculate the result.
After defining the function, it can be called with whatever argument you like. It doesn't have to be named x in the calling code, and it doesn't even have to be a variable:
print f(2)
>>> 4
We could write the code for the function in some other ways. For example:
def f(x):
y = x + 2
return y
or even
def f(x):
x = x + 2
return x
Again, we are following steps in order - x = x + 2 changes what x refers to (now it means the result from the sum), and that is what gets returned by return x (because that's the value *at the time that the return happens).
return means "output this value from this function".
print means "send this value to (generally) stdout"
In the Python REPL, a function's return value will be output to the screen by default (this isn't the same as printing it). This output only happens at the REPL, not when running code from a .py file. It is the same as the output from any other expression at the REPL.
This is an example of print:
>>> n = "foo\nbar" #just assigning a variable. No output
>>> n #the value is output, but it is in a "raw form"
'foo\nbar'
>>> print(n) #the \n is now a newline
foo
bar
>>>
This is an example of return:
>>> def getN():
... return "foo\nbar"
...
>>> getN() #When this isn't assigned to something, it is just output
'foo\nbar'
>>> n = getN() # assigning a variable to the return value. No output
>>> n #the value is output, but it is in a "raw form"
'foo\nbar'
>>> print(n) #the \n is now a newline
foo
bar
>>>
This answer goes over some of the cases that have not been discussed above.
The return statement allows you to terminate the execution of a function before you reach the end. This causes the flow of execution to immediately return to the caller.
In line number 4:
def ret(n):
if n > 9:
temp = "two digits"
return temp #Line 4
else:
temp = "one digit"
return temp #Line 8
print("return statement")
ret(10)
After the conditional statement gets executed the ret() function gets terminated due to return temp (line 4).
Thus the print("return statement") does not get executed.
Output:
two digits
This code that appears after the conditional statements, or the place the flow of control cannot reach, is the dead code.
Returning Values
In lines number 4 and 8, the return statement is being used to return the value of a temporary variable after the condition has been executed.
To bring out the difference between print and return:
def ret(n):
if n > 9:
print("two digits")
return "two digits"
else :
print("one digit")
return "one digit"
ret(25)
Output:
two digits
'two digits'
Note that return can also be used for control flow. By putting one or more return statements in the middle of a function, we can say: "stop executing this function. We've either got what we wanted or something's gone wrong!"
For example, imagine trying to implement str.find(sub) if we only had str.index(sub) available (index raises a ValueError if the substring isn't found, whereas find returns -1).
We could use a try/except block:
def find(s: str, sub: str) -> int:
try:
return s.index(sub)
except ValueError:
return -1
This is fine, and it works, but it's not very expressive. It's not immediately clear what would cause str.index to raise a ValueError: a reader of this code must understand the workings of str.index in order to understand the logic of find.
Rather than add a doc-string, saying "...unless sub isn't found, in which case return -1", we could make the code document itself, like this:
def find(s: str, sub: str) -> int:
if sub not in s:
return -1
return s.index(sub)
This makes the logic very clear.
The other nice thing about this is that once we get to return s.index(sub) we don't need to wrap it in a try/except because we already know that the substring is present!
See the Code Style section of the Python Guide for more advice on this way of using return.
To put it as simply as possible:
return makes the value (a variable, often) available for use by the caller (for example, to be stored by a function that the function using return is within). Without return, your value or variable wouldn't be available for the caller to store/re-use.
print, by contrast, prints to the screen - but does not make the value or variable available for use by the caller.
Difference between "return" and "print" can also be found in the following example:
RETURN:
def bigger(a, b):
if a > b:
return a
elif a <b:
return b
else:
return a
The above code will give correct results for all inputs.
PRINT:
def bigger(a, b):
if a > b:
print a
elif a <b:
print b
else:
print a
NOTE: This will fail for many test cases.
ERROR:
----
FAILURE: Test case input: 3, 8.
Expected result: 8
FAILURE: Test case input: 4, 3.
Expected result: 4
FAILURE: Test case input: 3, 3.
Expected result: 3
You passed 0 out of 3 test cases
Here is my understanding. (hope it will help someone and it's correct).
def count_number_of(x):
count = 0
for item in x:
if item == "what_you_look_for":
count = count + 1
return count
So this simple piece of code counts number of occurrences of something. The placement of return is significant. It tells your program where do you need the value. So when you print, you send output to the screen. When you return you tell the value to go somewhere. In this case you can see that count = 0 is indented with return - we want the value (count + 1) to replace 0.
If you try to follow logic of the code when you indent the return command further the output will always be 1, because we would never tell the initial count to change.
I hope I got it right.
Oh, and return is always inside a function.
return should be used for recursive functions/methods or you want to use the returned value for later applications in your algorithm.
print should be used when you want to display a meaningful and desired output to the user and you don't want to clutter the screen with intermediate results that the user is not interested in, although they are helpful for debugging your code.
The following code shows how to use return and print properly:
def fact(x):
if x < 2:
return 1
return x * fact(x - 1)
print(fact(5))
This explanation is true for all of the programming languages not just python.
return is part of a function definition, while print outputs text to the standard output (usually the console).
A function is a procedure accepting parameters and returning a value. return is for the latter, while the former is done with def.
Example:
def timestwo(x):
return x*2
Best thing about return function is you can return a value from function but you can do same with print so whats the difference ?
Basically return not about just returning it gives output in object form so that we can save that return value from function to any variable but we can't do with print because its same like stdout/cout in C Programming.
Follow below code for better understanding
CODE
def add(a, b):
print "ADDING %d + %d" % (a, b)
return a + b
def subtract(a, b):
print "SUBTRACTING %d - %d" % (a, b)
return a - b
def multiply(a, b):
print "MULTIPLYING %d * %d" % (a, b)
return a * b
def divide(a, b):
print "DIVIDING %d / %d" % (a, b)
return a / b
print "Let's do some math with just functions!"
age = add(30, 5)
height = subtract(78, 4)
weight = multiply(90, 2)
iq = divide(100, 2)
print "Age: %d, Height: %d, Weight: %d, IQ: %d" % (age, height, weight, iq)
# A puzzle for the extra credit, type it in anyway.
print "Here is a puzzle."
what = add(age, subtract(height, multiply(weight, divide(iq, 2))))
print "That becomes: ", what, "Can you do it by hand?"
We are now doing our own math functions for add, subtract, multiply, and divide. The important thing to notice is the last line where we say return a + b (in add). What this does is the following:
Our function is called with two arguments: a and b.
We print out what our function is doing, in this case "ADDING."
Then we tell Python to do something kind of backward: we return the addition of a + b. You might say this as, "I add a and b then return them."
Python adds the two numbers. Then when the function ends, any line that runs it will be able to assign this a + b result to a variable.
The simple truth is that print and return have nothing to do with each other. print is used to display things in the terminal (for command-line programs).1 return is used to get a result back when you call a function, so that you can use it in the next step of the program's logic.
Many beginners are confused when they try out code at Python's interpreter prompt2, like
>>> def example():
... return 1
...
>>> example()
1
The value was displayed; doesn't this mean that return displays things? No. If you try the same code in a .py file, you can see for yourself that running the script doesn't cause the 1 to display.
This shouldn't actually be confusing, because it works the same way as any other expression:
>>> 1 + 1
2
This displays at the interactive prompt, but not if we make a script that just says 1 + 1 and try running it.
Again: if you need something to display as part of your script, print it. If you need to use it in the next step of the calculation, return it.
The secret is that the interactive prompt is causing the result to be displayed, not the code. It's a separate step that the prompt does for you, so that you can see how the code works a step at a time, for testing purposes.
Now, let's see what happens with print:
>>> def example():
... return 'test'
...
>>> print(example())
test
The result will display, whether we have this in an interactive prompt or in a script. print is explicitly used to display the value - and as we can see, it displays differently. The interactive prompt uses what is called the repr of the value that was returned from example, while print uses the str of the value.
In practical terms: print shows us what the value looks like, in text form (for a string, that just means the contents of the string as-is). The interactive prompt shows us what the value is - typically, by writing something that looks like the source code we would use to create it.3
But wait - print is a function, right? (In 3.x, anyway). So it returned a value, right? Isn't the interpreter prompt supposed to display that in its separate step? What happened?
There is one more trick: print returns the special value None, which the interpreter prompt will ignore. We can test this by using some expressions that evaluate to None:
>>> None
>>> [None][0]
>>> def example():
... pass # see footnote 4
...
>>> example()
>>>
In each case, there is no separate line at all for output, not even a blank line - the interpreter prompt just goes back to the prompt.
1 It can also be used to write into files, although this is a less common idea and normally it will be clearer to use the .write method.
2 This is sometimes called the REPL, which stands for "read-eval-print loop".
3 This isn't always practical, or even possible - especially once we start defining our own classes. The firm rule is that repr will lean on the .__repr__ method of the object to do the dirty work; similarly, str leans on .__str__.
4 Functions in Python implicitly return None if they don't explicitly return a value.
Return statement -- will return some values according your function.
def example(n):
if n == 5:
return true
else:
return false
if you call above function and you pass number 5 then it will return true else it will return false.
Printing function -- it will print content that you have given to the print function or with in print function bracket.
def example(n):
if n == 5:
print("number is equal")
else:
print("number is not equal")

How to change n distinct global variable using function with parameters in python?

def change(a):
a=4
print('1:')
c=3
print('Value before changing',c)
change(c)
print('Value after changing',c)
print('2:')
d=6
print('Value before changing',d)
change(d)
print('Value after changing',d)
print('3:')
e=7
print('Value before changing',e)
change(e)
print('Value after changing',e)
I want to change n distinct global variables. Eg: I want to change c,d and e global variables using function by passing it as a argument. How can I do so?
Edit:
My original answer wouldn't have worked. So here's my new answer. First, you'll need a function to get the name of the variable. This can be done with the builtin inspect package like so,
import inspect
def retrieve_name(var):
callers_local_vars = inspect.currentframe().f_back.f_locals.items()
return [var_name for var_name, var_val in callers_local_vars if var_val is var]
Then, you'll need to rewrite your change function to
def change(a):
globals()[a] = 4
And use it in conjunction with the retrieve_name function like so,
change(retrieve_name(x)[0])
Because if you just put the retrieve_name inside change it will always return a.
Below is my original answer:
Tell the function change that a is global. Eg:
def change(a):
global a
a = 4
the global keyword tells the function that there already exists a variable of this name, defined outside the current scope. It is in, what python calls, the global scope (think the outter-most scope of a python file).
>>> def change(a, value=4):
global a
a = value
>>> x = 3
>>> change(x)
# x = 4
I've updated my previous answer so that it should work, but here is an alternative method.
def change(**kwargs):
for name in kwargs:
globals()[name] = 4
x = 3
change(x=x) # whatever follows the '=' sign is redundant in this case
Or, you could do
def change(**kwargs):
globals().update(kwargs)
x = 3
change(x=4) # the global value of 'x' is now 4

Problem with calling a variable from one function into another

I am trying to call a variable from one function into another by using the command return, without success. This is the example code I have:
def G():
x = 2
y = 3
g = x*y
return g
def H():
r = 2*G(g)
print(r)
return r
H()
When I run the code i receive the following error NameError: name 'g' is not defined
Thanks in advance!
Your function def G(): returns a variable. Therefore, when you call it, you assign a new variable for the returned variable.
Therefore you could use the following code:
def H():
G = G()
r = 2*G
print (r)
You don't need to give this statement:
return r
While you've accepted the answer above, I'd like to take the time to help you learn and clean up your code.
NameError: name 'g' is not defined
You're getting this error because g is a local variable of the function G()
Clean Version:
def multiple_two_numbers():
"""
Multiplies two numbers
Args:
none
Returns:
product : the result of multiplying two numbers
"""
x = 2
y = 3
product = x*y
return product
def main():
result = multiple_two_numbers()
answer = 2 * result
print(answer)
if __name__ == "__main__":
# execute only if run as a script
main()
Problems with your code:
Have clear variable and method names. g and G can be quiet confusing to the reader.
Your not using the if __name__ == "__main__":
Your return in H() unnecessary as well as the H() function.
Use docstrings to help make your code more readable.
Questions from the comments:
I have one question what if I had two or more variables in the first
function but I only want to call one of them
Your function can have as many variables as you want. If you want to return more than one variable you can use a dictionary(key,value) List, or Tuple. It all depends on your requirements.
Is it necessary to give different names, a and b, to the new
variables or can I use the same x and g?
Absolutely! Declaring another variable called x or y will cause the previous declaration to be overwritten. This could make it hard to debug and you and readers of your code will be frustrated.

How do you modify a variable that's a value in a dictionary when calling that variable by its key?

n = 3
d = {'x':n}
d['x'] += 1
print(n)
When I run it, I get
3
How do I make n = 4?
You can't do this, at least, not in any simple way.
The issue is very similar when you're just dealing with two variables bound to the same object. If you rebind one of them with an assignment, you will not see the new value through the other variable:
a = 3
b = a
a += 1 # binds a to a new integer, 4, since integers are immutable
print(b) # prints 3, not 4
One exception is if you are not binding a new value to the variable, but instead modifying a mutable object in-place. For instance, if instead of 1 you has a one-element list [1], you could replace the single value without creating a new list:
a = [3]
b = a
a[0] += 1 # doesn't rebind a, just mutates the list it points to
print(b[0]) # prints 4, since b still points to the same list as a
So, for your dictionary example you could take a similar approach and have n and your dictionary value be a list or other container object that you modify in-place.
Alternatively, you could store the variable name "n" in your dictionary and then rather than replacing it in your other code, you could use for a lookup in the globals dict:
n = 3
d = {"x": "n"} # note, the dictionary value is the string "n", not the variable n's value
globals()[d["x"]] += 1
print(n) # this actually does print 4, as you wanted
This is very awkward, of course, and only works when n is a global variable (you can't use the nominally equivalent call to locals in a function, as modifying the dictionary returned by locals doesn't change the local variables). I would not recommend this approach, but I wanted to show it can be done, if only badly.
You could use a class to contain the data values to enable additions. Basically you are creating a mutable object which acts as an integer.
It is a work around, but lets you accomplish what you want.
Note, that you probably need to override a few more Python operators to get full coverage:
class MyInt(object):
val = 0
def __init__(self,val):
self.val = val
def __iadd__(self,val):
self.val = self.val + val
def __repr__(self):
return repr(self.val)
n = MyInt(3)
print(n)
d = {'x':n}
d['x'] += 1
print(n)

How to create a list from user input in python then output list details

Pseudo-Code
def main():
create an empty list
value = getInput()
while value isnt zero:
add value to the list
value = getInput()
printOutput(list)
def getInput():
prompt the user for a value
make sure that the value is an int (convert to int)
return the number
def printOutput(list):
print out the number of input values
print out the individual input values
print out the sum of the input values
Your problem is that when you define and call printOutput, you name the argument list. However, in both main() and printOutput, the variable being used is actually named num. What happens is this:
main calls printOutput(list), passing it the built-in list:
printOutput receives that argument and assigns it to the local name list; and
The first line of printOutput tries to use num, which is not in scope, causing NameError.
You should edit the call and definition of printOutput to use num not list (indeed, you should never name variables that shadow built-ins like list, int, etc.). I suspect he argument is called list in the pseudo code to show the type of object the function should expect.
I believe you're looking for something like this:
def getInput():
try:
value=int(input("Enter a value: "))
except ValueError:
value=int(input("You must enter a number: "))
return value
def printOutput(lis):
print(len(lis))
print(lis)
print(sum(lis))
def main():
list_1=[]
value=getInput()
while value!=0:
list_1+=[value]
value=getInput()
printOutput(list_1)
main()

Resources