Related
Background:
I deal with a dataframe and want to divide the two columns of this dataframe to get a new column. The code is shown below:
import pandas as pd
df = {'drive_mile': [15.1, 2.1, 7.12], 'price': [40, 9, 31]}
df = pd.DataFrame(df)
df['price/km'] = df[['drive_mile', 'price']].apply(lambda x: x[1]/x[0])
print(df)
And I get the below result:
drive_mile price price/km
0 15.10 40 NaN
1 2.10 9 NaN
2 7.12 31 NaN
Why would this happen? And how can I fix it?
As pointed out in the comments, you missed the axis=1 parameter to perform the division on the right dimension using apply. This is because you end up with different indices when joining back in the DataFrame.
However, more importantly, do not use apply to perform a division!. Apply is often much less efficient compared to vectorial operations.
Use div:
df['price/km'] = df['drive_mile'].div(df['price'])
Or /:
df['price/km'] = df['drive_mile']/df['price']
I have the following indexed DataFrame with named columns and rows not- continuous numbers:
a b c d
2 0.671399 0.101208 -0.181532 0.241273
3 0.446172 -0.243316 0.051767 1.577318
5 0.614758 0.075793 -0.451460 -0.012493
I would like to add a new column, 'e', to the existing data frame and do not want to change anything in the data frame (i.e., the new column always has the same length as the DataFrame).
0 -0.335485
1 -1.166658
2 -0.385571
dtype: float64
How can I add column e to the above example?
Edit 2017
As indicated in the comments and by #Alexander, currently the best method to add the values of a Series as a new column of a DataFrame could be using assign:
df1 = df1.assign(e=pd.Series(np.random.randn(sLength)).values)
Edit 2015
Some reported getting the SettingWithCopyWarning with this code.
However, the code still runs perfectly with the current pandas version 0.16.1.
>>> sLength = len(df1['a'])
>>> df1
a b c d
6 -0.269221 -0.026476 0.997517 1.294385
8 0.917438 0.847941 0.034235 -0.448948
>>> df1['e'] = pd.Series(np.random.randn(sLength), index=df1.index)
>>> df1
a b c d e
6 -0.269221 -0.026476 0.997517 1.294385 1.757167
8 0.917438 0.847941 0.034235 -0.448948 2.228131
>>> pd.version.short_version
'0.16.1'
The SettingWithCopyWarning aims to inform of a possibly invalid assignment on a copy of the Dataframe. It doesn't necessarily say you did it wrong (it can trigger false positives) but from 0.13.0 it let you know there are more adequate methods for the same purpose. Then, if you get the warning, just follow its advise: Try using .loc[row_index,col_indexer] = value instead
>>> df1.loc[:,'f'] = pd.Series(np.random.randn(sLength), index=df1.index)
>>> df1
a b c d e f
6 -0.269221 -0.026476 0.997517 1.294385 1.757167 -0.050927
8 0.917438 0.847941 0.034235 -0.448948 2.228131 0.006109
>>>
In fact, this is currently the more efficient method as described in pandas docs
Original answer:
Use the original df1 indexes to create the series:
df1['e'] = pd.Series(np.random.randn(sLength), index=df1.index)
This is the simple way of adding a new column: df['e'] = e
I would like to add a new column, 'e', to the existing data frame and do not change anything in the data frame. (The series always got the same length as a dataframe.)
I assume that the index values in e match those in df1.
The easiest way to initiate a new column named e, and assign it the values from your series e:
df['e'] = e.values
assign (Pandas 0.16.0+)
As of Pandas 0.16.0, you can also use assign, which assigns new columns to a DataFrame and returns a new object (a copy) with all the original columns in addition to the new ones.
df1 = df1.assign(e=e.values)
As per this example (which also includes the source code of the assign function), you can also include more than one column:
df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
>>> df.assign(mean_a=df.a.mean(), mean_b=df.b.mean())
a b mean_a mean_b
0 1 3 1.5 3.5
1 2 4 1.5 3.5
In context with your example:
np.random.seed(0)
df1 = pd.DataFrame(np.random.randn(10, 4), columns=['a', 'b', 'c', 'd'])
mask = df1.applymap(lambda x: x <-0.7)
df1 = df1[-mask.any(axis=1)]
sLength = len(df1['a'])
e = pd.Series(np.random.randn(sLength))
>>> df1
a b c d
0 1.764052 0.400157 0.978738 2.240893
2 -0.103219 0.410599 0.144044 1.454274
3 0.761038 0.121675 0.443863 0.333674
7 1.532779 1.469359 0.154947 0.378163
9 1.230291 1.202380 -0.387327 -0.302303
>>> e
0 -1.048553
1 -1.420018
2 -1.706270
3 1.950775
4 -0.509652
dtype: float64
df1 = df1.assign(e=e.values)
>>> df1
a b c d e
0 1.764052 0.400157 0.978738 2.240893 -1.048553
2 -0.103219 0.410599 0.144044 1.454274 -1.420018
3 0.761038 0.121675 0.443863 0.333674 -1.706270
7 1.532779 1.469359 0.154947 0.378163 1.950775
9 1.230291 1.202380 -0.387327 -0.302303 -0.509652
The description of this new feature when it was first introduced can be found here.
Super simple column assignment
A pandas dataframe is implemented as an ordered dict of columns.
This means that the __getitem__ [] can not only be used to get a certain column, but __setitem__ [] = can be used to assign a new column.
For example, this dataframe can have a column added to it by simply using the [] accessor
size name color
0 big rose red
1 small violet blue
2 small tulip red
3 small harebell blue
df['protected'] = ['no', 'no', 'no', 'yes']
size name color protected
0 big rose red no
1 small violet blue no
2 small tulip red no
3 small harebell blue yes
Note that this works even if the index of the dataframe is off.
df.index = [3,2,1,0]
df['protected'] = ['no', 'no', 'no', 'yes']
size name color protected
3 big rose red no
2 small violet blue no
1 small tulip red no
0 small harebell blue yes
[]= is the way to go, but watch out!
However, if you have a pd.Series and try to assign it to a dataframe where the indexes are off, you will run in to trouble. See example:
df['protected'] = pd.Series(['no', 'no', 'no', 'yes'])
size name color protected
3 big rose red yes
2 small violet blue no
1 small tulip red no
0 small harebell blue no
This is because a pd.Series by default has an index enumerated from 0 to n. And the pandas [] = method tries to be "smart"
What actually is going on.
When you use the [] = method pandas is quietly performing an outer join or outer merge using the index of the left hand dataframe and the index of the right hand series. df['column'] = series
Side note
This quickly causes cognitive dissonance, since the []= method is trying to do a lot of different things depending on the input, and the outcome cannot be predicted unless you just know how pandas works. I would therefore advice against the []= in code bases, but when exploring data in a notebook, it is fine.
Going around the problem
If you have a pd.Series and want it assigned from top to bottom, or if you are coding productive code and you are not sure of the index order, it is worth it to safeguard for this kind of issue.
You could downcast the pd.Series to a np.ndarray or a list, this will do the trick.
df['protected'] = pd.Series(['no', 'no', 'no', 'yes']).values
or
df['protected'] = list(pd.Series(['no', 'no', 'no', 'yes']))
But this is not very explicit.
Some coder may come along and say "Hey, this looks redundant, I'll just optimize this away".
Explicit way
Setting the index of the pd.Series to be the index of the df is explicit.
df['protected'] = pd.Series(['no', 'no', 'no', 'yes'], index=df.index)
Or more realistically, you probably have a pd.Series already available.
protected_series = pd.Series(['no', 'no', 'no', 'yes'])
protected_series.index = df.index
3 no
2 no
1 no
0 yes
Can now be assigned
df['protected'] = protected_series
size name color protected
3 big rose red no
2 small violet blue no
1 small tulip red no
0 small harebell blue yes
Alternative way with df.reset_index()
Since the index dissonance is the problem, if you feel that the index of the dataframe should not dictate things, you can simply drop the index, this should be faster, but it is not very clean, since your function now probably does two things.
df.reset_index(drop=True)
protected_series.reset_index(drop=True)
df['protected'] = protected_series
size name color protected
0 big rose red no
1 small violet blue no
2 small tulip red no
3 small harebell blue yes
Note on df.assign
While df.assign make it more explicit what you are doing, it actually has all the same problems as the above []=
df.assign(protected=pd.Series(['no', 'no', 'no', 'yes']))
size name color protected
3 big rose red yes
2 small violet blue no
1 small tulip red no
0 small harebell blue no
Just watch out with df.assign that your column is not called self. It will cause errors. This makes df.assign smelly, since there are these kind of artifacts in the function.
df.assign(self=pd.Series(['no', 'no', 'no', 'yes'])
TypeError: assign() got multiple values for keyword argument 'self'
You may say, "Well, I'll just not use self then". But who knows how this function changes in the future to support new arguments. Maybe your column name will be an argument in a new update of pandas, causing problems with upgrading.
It seems that in recent Pandas versions the way to go is to use df.assign:
df1 = df1.assign(e=np.random.randn(sLength))
It doesn't produce SettingWithCopyWarning.
Doing this directly via NumPy will be the most efficient:
df1['e'] = np.random.randn(sLength)
Note my original (very old) suggestion was to use map (which is much slower):
df1['e'] = df1['a'].map(lambda x: np.random.random())
Easiest ways:-
data['new_col'] = list_of_values
data.loc[ : , 'new_col'] = list_of_values
This way you avoid what is called chained indexing when setting new values in a pandas object. Click here to read further.
If you want to set the whole new column to an initial base value (e.g. None), you can do this: df1['e'] = None
This actually would assign "object" type to the cell. So later you're free to put complex data types, like list, into individual cells.
I got the dreaded SettingWithCopyWarning, and it wasn't fixed by using the iloc syntax. My DataFrame was created by read_sql from an ODBC source. Using a suggestion by lowtech above, the following worked for me:
df.insert(len(df.columns), 'e', pd.Series(np.random.randn(sLength), index=df.index))
This worked fine to insert the column at the end. I don't know if it is the most efficient, but I don't like warning messages. I think there is a better solution, but I can't find it, and I think it depends on some aspect of the index.
Note. That this only works once and will give an error message if trying to overwrite and existing column.
Note As above and from 0.16.0 assign is the best solution. See documentation http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.assign.html#pandas.DataFrame.assign
Works well for data flow type where you don't overwrite your intermediate values.
First create a python's list_of_e that has relevant data.
Use this:
df['e'] = list_of_e
To create an empty column
df['i'] = None
If the column you are trying to add is a series variable then just :
df["new_columns_name"]=series_variable_name #this will do it for you
This works well even if you are replacing an existing column.just type the new_columns_name same as the column you want to replace.It will just overwrite the existing column data with the new series data.
If the data frame and Series object have the same index, pandas.concat also works here:
import pandas as pd
df
# a b c d
#0 0.671399 0.101208 -0.181532 0.241273
#1 0.446172 -0.243316 0.051767 1.577318
#2 0.614758 0.075793 -0.451460 -0.012493
e = pd.Series([-0.335485, -1.166658, -0.385571])
e
#0 -0.335485
#1 -1.166658
#2 -0.385571
#dtype: float64
# here we need to give the series object a name which converts to the new column name
# in the result
df = pd.concat([df, e.rename("e")], axis=1)
df
# a b c d e
#0 0.671399 0.101208 -0.181532 0.241273 -0.335485
#1 0.446172 -0.243316 0.051767 1.577318 -1.166658
#2 0.614758 0.075793 -0.451460 -0.012493 -0.385571
In case they don't have the same index:
e.index = df.index
df = pd.concat([df, e.rename("e")], axis=1)
Foolproof:
df.loc[:, 'NewCol'] = 'New_Val'
Example:
df = pd.DataFrame(data=np.random.randn(20, 4), columns=['A', 'B', 'C', 'D'])
df
A B C D
0 -0.761269 0.477348 1.170614 0.752714
1 1.217250 -0.930860 -0.769324 -0.408642
2 -0.619679 -1.227659 -0.259135 1.700294
3 -0.147354 0.778707 0.479145 2.284143
4 -0.529529 0.000571 0.913779 1.395894
5 2.592400 0.637253 1.441096 -0.631468
6 0.757178 0.240012 -0.553820 1.177202
7 -0.986128 -1.313843 0.788589 -0.707836
8 0.606985 -2.232903 -1.358107 -2.855494
9 -0.692013 0.671866 1.179466 -1.180351
10 -1.093707 -0.530600 0.182926 -1.296494
11 -0.143273 -0.503199 -1.328728 0.610552
12 -0.923110 -1.365890 -1.366202 -1.185999
13 -2.026832 0.273593 -0.440426 -0.627423
14 -0.054503 -0.788866 -0.228088 -0.404783
15 0.955298 -1.430019 1.434071 -0.088215
16 -0.227946 0.047462 0.373573 -0.111675
17 1.627912 0.043611 1.743403 -0.012714
18 0.693458 0.144327 0.329500 -0.655045
19 0.104425 0.037412 0.450598 -0.923387
df.drop([3, 5, 8, 10, 18], inplace=True)
df
A B C D
0 -0.761269 0.477348 1.170614 0.752714
1 1.217250 -0.930860 -0.769324 -0.408642
2 -0.619679 -1.227659 -0.259135 1.700294
4 -0.529529 0.000571 0.913779 1.395894
6 0.757178 0.240012 -0.553820 1.177202
7 -0.986128 -1.313843 0.788589 -0.707836
9 -0.692013 0.671866 1.179466 -1.180351
11 -0.143273 -0.503199 -1.328728 0.610552
12 -0.923110 -1.365890 -1.366202 -1.185999
13 -2.026832 0.273593 -0.440426 -0.627423
14 -0.054503 -0.788866 -0.228088 -0.404783
15 0.955298 -1.430019 1.434071 -0.088215
16 -0.227946 0.047462 0.373573 -0.111675
17 1.627912 0.043611 1.743403 -0.012714
19 0.104425 0.037412 0.450598 -0.923387
df.loc[:, 'NewCol'] = 0
df
A B C D NewCol
0 -0.761269 0.477348 1.170614 0.752714 0
1 1.217250 -0.930860 -0.769324 -0.408642 0
2 -0.619679 -1.227659 -0.259135 1.700294 0
4 -0.529529 0.000571 0.913779 1.395894 0
6 0.757178 0.240012 -0.553820 1.177202 0
7 -0.986128 -1.313843 0.788589 -0.707836 0
9 -0.692013 0.671866 1.179466 -1.180351 0
11 -0.143273 -0.503199 -1.328728 0.610552 0
12 -0.923110 -1.365890 -1.366202 -1.185999 0
13 -2.026832 0.273593 -0.440426 -0.627423 0
14 -0.054503 -0.788866 -0.228088 -0.404783 0
15 0.955298 -1.430019 1.434071 -0.088215 0
16 -0.227946 0.047462 0.373573 -0.111675 0
17 1.627912 0.043611 1.743403 -0.012714 0
19 0.104425 0.037412 0.450598 -0.923387 0
One thing to note, though, is that if you do
df1['e'] = Series(np.random.randn(sLength), index=df1.index)
this will effectively be a left join on the df1.index. So if you want to have an outer join effect, my probably imperfect solution is to create a dataframe with index values covering the universe of your data, and then use the code above. For example,
data = pd.DataFrame(index=all_possible_values)
df1['e'] = Series(np.random.randn(sLength), index=df1.index)
to insert a new column at a given location (0 <= loc <= amount of columns) in a data frame, just use Dataframe.insert:
DataFrame.insert(loc, column, value)
Therefore, if you want to add the column e at the end of a data frame called df, you can use:
e = [-0.335485, -1.166658, -0.385571]
DataFrame.insert(loc=len(df.columns), column='e', value=e)
value can be a Series, an integer (in which case all cells get filled with this one value), or an array-like structure
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.insert.html
Let me just add that, just like for hum3, .loc didn't solve the SettingWithCopyWarning and I had to resort to df.insert(). In my case false positive was generated by "fake" chain indexing dict['a']['e'], where 'e' is the new column, and dict['a'] is a DataFrame coming from dictionary.
Also note that if you know what you are doing, you can switch of the warning using
pd.options.mode.chained_assignment = None
and than use one of the other solutions given here.
Before assigning a new column, if you have indexed data, you need to sort the index. At least in my case I had to:
data.set_index(['index_column'], inplace=True)
"if index is unsorted, assignment of a new column will fail"
data.sort_index(inplace = True)
data.loc['index_value1', 'column_y'] = np.random.randn(data.loc['index_value1', 'column_x'].shape[0])
To add a new column, 'e', to the existing data frame
df1.loc[:,'e'] = Series(np.random.randn(sLength))
I was looking for a general way of adding a column of numpy.nans to a dataframe without getting the dumb SettingWithCopyWarning.
From the following:
the answers here
this question about passing a variable as a keyword argument
this method for generating a numpy array of NaNs in-line
I came up with this:
col = 'column_name'
df = df.assign(**{col:numpy.full(len(df), numpy.nan)})
For the sake of completeness - yet another solution using DataFrame.eval() method:
Data:
In [44]: e
Out[44]:
0 1.225506
1 -1.033944
2 -0.498953
3 -0.373332
4 0.615030
5 -0.622436
dtype: float64
In [45]: df1
Out[45]:
a b c d
0 -0.634222 -0.103264 0.745069 0.801288
4 0.782387 -0.090279 0.757662 -0.602408
5 -0.117456 2.124496 1.057301 0.765466
7 0.767532 0.104304 -0.586850 1.051297
8 -0.103272 0.958334 1.163092 1.182315
9 -0.616254 0.296678 -0.112027 0.679112
Solution:
In [46]: df1.eval("e = #e.values", inplace=True)
In [47]: df1
Out[47]:
a b c d e
0 -0.634222 -0.103264 0.745069 0.801288 1.225506
4 0.782387 -0.090279 0.757662 -0.602408 -1.033944
5 -0.117456 2.124496 1.057301 0.765466 -0.498953
7 0.767532 0.104304 -0.586850 1.051297 -0.373332
8 -0.103272 0.958334 1.163092 1.182315 0.615030
9 -0.616254 0.296678 -0.112027 0.679112 -0.622436
If you just need to create a new empty column then the shortest solution is:
df.loc[:, 'e'] = pd.Series()
The following is what I did... But I'm pretty new to pandas and really Python in general, so no promises.
df = pd.DataFrame([[1, 2], [3, 4], [5,6]], columns=list('AB'))
newCol = [3,5,7]
newName = 'C'
values = np.insert(df.values,df.shape[1],newCol,axis=1)
header = df.columns.values.tolist()
header.append(newName)
df = pd.DataFrame(values,columns=header)
If we want to assign a scaler value eg: 10 to all rows of a new column in a df:
df = df.assign(new_col=lambda x:10) # x is each row passed in to the lambda func
df will now have new column 'new_col' with value=10 in all rows.
If you get the SettingWithCopyWarning, an easy fix is to copy the DataFrame you are trying to add a column to.
df = df.copy()
df['col_name'] = values
x=pd.DataFrame([1,2,3,4,5])
y=pd.DataFrame([5,4,3,2,1])
z=pd.concat([x,y],axis=1)
4 ways you can insert a new column to a pandas DataFrame
using simple assignment, insert(), assign() and Concat() methods.
import pandas as pd
df = pd.DataFrame({
'col_a':[True, False, False],
'col_b': [1, 2, 3],
})
print(df)
col_a col_b
0 True 1
1 False 2
2 False 3
Using simple assignment
ser = pd.Series(['a', 'b', 'c'], index=[0, 1, 2])
print(ser)
0 a
1 b
2 c
dtype: object
df['col_c'] = pd.Series(['a', 'b', 'c'], index=[1, 2, 3])
print(df)
col_a col_b col_c
0 True 1 NaN
1 False 2 a
2 False 3 b
Using assign()
e = pd.Series([1.0, 3.0, 2.0], index=[0, 2, 1])
ser = pd.Series(['a', 'b', 'c'], index=[0, 1, 2])
df.assign(colC=s.values, colB=e.values)
col_a col_b col_c
0 True 1.0 a
1 False 3.0 b
2 False 2.0 c
Using insert()
df.insert(len(df.columns), 'col_c', ser.values)
print(df)
col_a col_b col_c
0 True 1 a
1 False 2 b
2 False 3 c
Using concat()
ser = pd.Series(['a', 'b', 'c'], index=[10, 20, 30])
df = pd.concat([df, ser.rename('colC')], axis=1)
print(df)
col_a col_b col_c
0 True 1.0 NaN
1 False 2.0 NaN
2 False 3.0 NaN
10 NaN NaN a
20 NaN NaN b
30 NaN NaN c
this is a special case of adding a new column to a pandas dataframe. Here, I am adding a new feature/column based on an existing column data of the dataframe.
so, let our dataFrame has columns 'feature_1', 'feature_2', 'probability_score' and we have to add a new_column 'predicted_class' based on data in column 'probability_score'.
I will use map() function from python and also define a function of my own which will implement the logic on how to give a particular class_label to every row in my dataFrame.
data = pd.read_csv('data.csv')
def myFunction(x):
//implement your logic here
if so and so:
return a
return b
variable_1 = data['probability_score']
predicted_class = variable_1.map(myFunction)
data['predicted_class'] = predicted_class
// check dataFrame, new column is included based on an existing column data for each row
data.head()
Whenever you add a Series object as new column to an existing DF, you need to make sure that they both have the same index.
Then add it to the DF
e_series = pd.Series([-0.335485, -1.166658,-0.385571])
print(e_series)
e_series.index = d_f.index
d_f['e'] = e_series
d_f
import pandas as pd
# Define a dictionary containing data
data = {'a': [0,0,0.671399,0.446172,0,0.614758],
'b': [0,0,0.101208,-0.243316,0,0.075793],
'c': [0,0,-0.181532,0.051767,0,-0.451460],
'd': [0,0,0.241273,1.577318,0,-0.012493]}
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
# Declare a list that is to be converted into a column
col_e = [-0.335485,-1.166658,-0.385571,0,0,0]
df['e'] = col_e
# add column 'e'
df['e'] = col_e
# Observe the result
df
I am experimenting with Dask, but I encountered a problem while using apply after grouping.
I have a Dask DataFrame with a large number of rows. Let's consider for example the following
N=10000
df = pd.DataFrame({'col_1':np.random.random(N), 'col_2': np.random.random(N) })
ddf = dd.from_pandas(df, npartitions=8)
I want to bin the values of col_1 and I follow the solution from here
bins = np.linspace(0,1,11)
labels = list(range(len(bins)-1))
ddf2 = ddf.map_partitions(test_f, 'col_1',bins,labels)
where
def test_f(df,col,bins,labels):
return df.assign(bin_num = pd.cut(df[col],bins,labels=labels))
and this works as I expect it to.
Now I want to take the median value in each bin (taken from here)
median = ddf2.groupby('bin_num')['col_1'].apply(pd.Series.median).compute()
Having 10 bins, I expect median to have 10 rows, but it actually has 80. The dataframe has 8 partitions so I guess that somehow the apply is working on each one individually.
However, If I want the mean and use mean
median = ddf2.groupby('bin_num')['col_1'].mean().compute()
it works and the output has 10 rows.
The question is then: what am I doing wrong that is preventing apply from operating as mean?
Maybe this warning is the key (Dask doc: SeriesGroupBy.apply) :
Pandas’ groupby-apply can be used to to apply arbitrary functions, including aggregations that result in one row per group. Dask’s groupby-apply will apply func once to each partition-group pair, so when func is a reduction you’ll end up with one row per partition-group pair. To apply a custom aggregation with Dask, use dask.dataframe.groupby.Aggregation.
You are right! I was able to reproduce your problem on Dask 2.11.0. The good news is that there's a solution! It appears that the Dask groupby problem is specifically with the category type (pandas.core.dtypes.dtypes.CategoricalDtype). By casting the category column to another column type (float, int, str), then the groupby will work correctly.
Here's your code that I copied:
import dask.dataframe as dd
import pandas as pd
import numpy as np
def test_f(df, col, bins, labels):
return df.assign(bin_num=pd.cut(df[col], bins, labels=labels))
N = 10000
df = pd.DataFrame({'col_1': np.random.random(N), 'col_2': np.random.random(N)})
ddf = dd.from_pandas(df, npartitions=8)
bins = np.linspace(0,1,11)
labels = list(range(len(bins)-1))
ddf2 = ddf.map_partitions(test_f, 'col_1', bins, labels)
print(ddf2.groupby('bin_num')['col_1'].apply(pd.Series.median).compute())
which prints out the problem you mentioned
bin_num
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
...
5 0.550844
6 0.651036
7 0.751220
8 NaN
9 NaN
Name: col_1, Length: 80, dtype: float64
Here's my solution:
ddf3 = ddf2.copy()
ddf3["bin_num"] = ddf3["bin_num"].astype("int")
print(ddf3.groupby('bin_num')['col_1'].apply(pd.Series.median).compute())
which printed:
bin_num
9 0.951369
2 0.249150
1 0.149563
0 0.049897
3 0.347906
8 0.847819
4 0.449029
5 0.550608
6 0.652778
7 0.749922
Name: col_1, dtype: float64
#MRocklin or #TomAugspurger
Would you be able to create a fix for this in a new release? I think there is sufficient reproducible code here. Thanks for all your hard work. I love Dask and use it every day ;)
How do I create an empty DataFrame, then add rows, one by one?
I created an empty DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
Then I can add a new row at the end and fill a single field with:
df = df._set_value(index=len(df), col='qty1', value=10.0)
It works for only one field at a time. What is a better way to add new row to df?
You can use df.loc[i], where the row with index i will be what you specify it to be in the dataframe.
>>> import pandas as pd
>>> from numpy.random import randint
>>> df = pd.DataFrame(columns=['lib', 'qty1', 'qty2'])
>>> for i in range(5):
>>> df.loc[i] = ['name' + str(i)] + list(randint(10, size=2))
>>> df
lib qty1 qty2
0 name0 3 3
1 name1 2 4
2 name2 2 8
3 name3 2 1
4 name4 9 6
In case you can get all data for the data frame upfront, there is a much faster approach than appending to a data frame:
Create a list of dictionaries in which each dictionary corresponds to an input data row.
Create a data frame from this list.
I had a similar task for which appending to a data frame row by row took 30 min, and creating a data frame from a list of dictionaries completed within seconds.
rows_list = []
for row in input_rows:
dict1 = {}
# get input row in dictionary format
# key = col_name
dict1.update(blah..)
rows_list.append(dict1)
df = pd.DataFrame(rows_list)
In the case of adding a lot of rows to dataframe, I am interested in performance. So I tried the four most popular methods and checked their speed.
Performance
Using .append (NPE's answer)
Using .loc (fred's answer)
Using .loc with preallocating (FooBar's answer)
Using dict and create DataFrame in the end (ShikharDua's answer)
Runtime results (in seconds):
Approach
1000 rows
5000 rows
10 000 rows
.append
0.69
3.39
6.78
.loc without prealloc
0.74
3.90
8.35
.loc with prealloc
0.24
2.58
8.70
dict
0.012
0.046
0.084
So I use addition through the dictionary for myself.
Code:
import pandas as pd
import numpy as np
import time
del df1, df2, df3, df4
numOfRows = 1000
# append
startTime = time.perf_counter()
df1 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows-4):
df1 = df1.append( dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']), ignore_index=True)
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df1.shape)
# .loc w/o prealloc
startTime = time.perf_counter()
df2 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows):
df2.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df2.shape)
# .loc with prealloc
df3 = pd.DataFrame(index=np.arange(0, numOfRows), columns=['A', 'B', 'C', 'D', 'E'] )
startTime = time.perf_counter()
for i in range( 1,numOfRows):
df3.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df3.shape)
# dict
startTime = time.perf_counter()
row_list = []
for i in range (0,5):
row_list.append(dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']))
for i in range( 1,numOfRows-4):
dict1 = dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E'])
row_list.append(dict1)
df4 = pd.DataFrame(row_list, columns=['A','B','C','D','E'])
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df4.shape)
P.S.: I believe my realization isn't perfect, and maybe there is some optimization that could be done.
You could use pandas.concat(). For details and examples, see Merge, join, and concatenate.
For example:
def append_row(df, row):
return pd.concat([
df,
pd.DataFrame([row], columns=row.index)]
).reset_index(drop=True)
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
new_row = pd.Series({'lib':'A', 'qty1':1, 'qty2': 2})
df = append_row(df, new_row)
NEVER grow a DataFrame!
Yes, people have already explained that you should NEVER grow a DataFrame, and that you should append your data to a list and convert it to a DataFrame once at the end. But do you understand why?
Here are the most important reasons, taken from my post here.
It is always cheaper/faster to append to a list and create a DataFrame in one go.
Lists take up less memory and are a much lighter data structure to work with, append, and remove.
dtypes are automatically inferred for your data. On the flip side, creating an empty frame of NaNs will automatically make them object, which is bad.
An index is automatically created for you, instead of you having to take care to assign the correct index to the row you are appending.
This is The Right Way™ to accumulate your data
data = []
for a, b, c in some_function_that_yields_data():
data.append([a, b, c])
df = pd.DataFrame(data, columns=['A', 'B', 'C'])
These options are horrible
append or concat inside a loop
append and concat aren't inherently bad in isolation. The
problem starts when you iteratively call them inside a loop - this
results in quadratic memory usage.
# Creates empty DataFrame and appends
df = pd.DataFrame(columns=['A', 'B', 'C'])
for a, b, c in some_function_that_yields_data():
df = df.append({'A': i, 'B': b, 'C': c}, ignore_index=True)
# This is equally bad:
# df = pd.concat(
# [df, pd.Series({'A': i, 'B': b, 'C': c})],
# ignore_index=True)
Empty DataFrame of NaNs
Never create a DataFrame of NaNs as the columns are initialized with
object (slow, un-vectorizable dtype).
# Creates DataFrame of NaNs and overwrites values.
df = pd.DataFrame(columns=['A', 'B', 'C'], index=range(5))
for a, b, c in some_function_that_yields_data():
df.loc[len(df)] = [a, b, c]
The Proof is in the Pudding
Timing these methods is the fastest way to see just how much they differ in terms of their memory and utility.
Benchmarking code for reference.
It's posts like this that remind me why I'm a part of this community. People understand the importance of teaching folks getting the right answer with the right code, not the right answer with wrong code. Now you might argue that it is not an issue to use loc or append if you're only adding a single row to your DataFrame. However, people often look to this question to add more than just one row - often the requirement is to iteratively add a row inside a loop using data that comes from a function (see related question). In that case it is important to understand that iteratively growing a DataFrame is not a good idea.
If you know the number of entries ex ante, you should preallocate the space by also providing the index (taking the data example from a different answer):
import pandas as pd
import numpy as np
# we know we're gonna have 5 rows of data
numberOfRows = 5
# create dataframe
df = pd.DataFrame(index=np.arange(0, numberOfRows), columns=('lib', 'qty1', 'qty2') )
# now fill it up row by row
for x in np.arange(0, numberOfRows):
#loc or iloc both work here since the index is natural numbers
df.loc[x] = [np.random.randint(-1,1) for n in range(3)]
In[23]: df
Out[23]:
lib qty1 qty2
0 -1 -1 -1
1 0 0 0
2 -1 0 -1
3 0 -1 0
4 -1 0 0
Speed comparison
In[30]: %timeit tryThis() # function wrapper for this answer
In[31]: %timeit tryOther() # function wrapper without index (see, for example, #fred)
1000 loops, best of 3: 1.23 ms per loop
100 loops, best of 3: 2.31 ms per loop
And - as from the comments - with a size of 6000, the speed difference becomes even larger:
Increasing the size of the array (12) and the number of rows (500) makes
the speed difference more striking: 313ms vs 2.29s
mycolumns = ['A', 'B']
df = pd.DataFrame(columns=mycolumns)
rows = [[1,2],[3,4],[5,6]]
for row in rows:
df.loc[len(df)] = row
You can append a single row as a dictionary using the ignore_index option.
>>> f = pandas.DataFrame(data = {'Animal':['cow','horse'], 'Color':['blue', 'red']})
>>> f
Animal Color
0 cow blue
1 horse red
>>> f.append({'Animal':'mouse', 'Color':'black'}, ignore_index=True)
Animal Color
0 cow blue
1 horse red
2 mouse black
For efficient appending, see How to add an extra row to a pandas dataframe and Setting With Enlargement.
Add rows through loc/ix on non existing key index data. For example:
In [1]: se = pd.Series([1,2,3])
In [2]: se
Out[2]:
0 1
1 2
2 3
dtype: int64
In [3]: se[5] = 5.
In [4]: se
Out[4]:
0 1.0
1 2.0
2 3.0
5 5.0
dtype: float64
Or:
In [1]: dfi = pd.DataFrame(np.arange(6).reshape(3,2),
.....: columns=['A','B'])
.....:
In [2]: dfi
Out[2]:
A B
0 0 1
1 2 3
2 4 5
In [3]: dfi.loc[:,'C'] = dfi.loc[:,'A']
In [4]: dfi
Out[4]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
In [5]: dfi.loc[3] = 5
In [6]: dfi
Out[6]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5
For the sake of a Pythonic way:
res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
res = res.append([{'qty1':10.0}], ignore_index=True)
print(res.head())
lib qty1 qty2
0 NaN 10.0 NaN
You can also build up a list of lists and convert it to a dataframe -
import pandas as pd
columns = ['i','double','square']
rows = []
for i in range(6):
row = [i, i*2, i*i]
rows.append(row)
df = pd.DataFrame(rows, columns=columns)
giving
i double square
0 0 0 0
1 1 2 1
2 2 4 4
3 3 6 9
4 4 8 16
5 5 10 25
If you always want to add a new row at the end, use this:
df.loc[len(df)] = ['name5', 9, 0]
I figured out a simple and nice way:
>>> df
A B C
one 1 2 3
>>> df.loc["two"] = [4,5,6]
>>> df
A B C
one 1 2 3
two 4 5 6
Note the caveat with performance as noted in the comments.
This is not an answer to the OP question, but a toy example to illustrate ShikharDua's answer which I found very useful.
While this fragment is trivial, in the actual data I had 1,000s of rows, and many columns, and I wished to be able to group by different columns and then perform the statistics below for more than one target column. So having a reliable method for building the data frame one row at a time was a great convenience. Thank you ShikharDua!
import pandas as pd
BaseData = pd.DataFrame({ 'Customer' : ['Acme','Mega','Acme','Acme','Mega','Acme'],
'Territory' : ['West','East','South','West','East','South'],
'Product' : ['Econ','Luxe','Econ','Std','Std','Econ']})
BaseData
columns = ['Customer','Num Unique Products', 'List Unique Products']
rows_list=[]
for name, group in BaseData.groupby('Customer'):
RecordtoAdd={} #initialise an empty dict
RecordtoAdd.update({'Customer' : name}) #
RecordtoAdd.update({'Num Unique Products' : len(pd.unique(group['Product']))})
RecordtoAdd.update({'List Unique Products' : pd.unique(group['Product'])})
rows_list.append(RecordtoAdd)
AnalysedData = pd.DataFrame(rows_list)
print('Base Data : \n',BaseData,'\n\n Analysed Data : \n',AnalysedData)
You can use a generator object to create a Dataframe, which will be more memory efficient over the list.
num = 10
# Generator function to generate generator object
def numgen_func(num):
for i in range(num):
yield ('name_{}'.format(i), (i*i), (i*i*i))
# Generator expression to generate generator object (Only once data get populated, can not be re used)
numgen_expression = (('name_{}'.format(i), (i*i), (i*i*i)) for i in range(num) )
df = pd.DataFrame(data=numgen_func(num), columns=('lib', 'qty1', 'qty2'))
To add raw to existing DataFrame you can use append method.
df = df.append([{ 'lib': "name_20", 'qty1': 20, 'qty2': 400 }])
Instead of a list of dictionaries as in ShikharDua's answer (row-based), we can also represent our table as a dictionary of lists (column-based), where each list stores one column in row-order, given we know our columns beforehand. At the end we construct our DataFrame once.
In both cases, the dictionary keys are always the column names. Row order is stored implicitly as order in a list. For c columns and n rows, this uses one dictionary of c lists, versus one list of n dictionaries. The list-of-dictionaries method has each dictionary storing all keys redundantly and requires creating a new dictionary for every row. Here we only append to lists, which overall is the same time complexity (adding entries to list and dictionary are both amortized constant time) but may have less overhead due to being a simple operation.
# Current data
data = {"Animal":["cow", "horse"], "Color":["blue", "red"]}
# Adding a new row (be careful to ensure every column gets another value)
data["Animal"].append("mouse")
data["Color"].append("black")
# At the end, construct our DataFrame
df = pd.DataFrame(data)
# Animal Color
# 0 cow blue
# 1 horse red
# 2 mouse black
Create a new record (data frame) and add to old_data_frame.
Pass a list of values and the corresponding column names to create a new_record (data_frame):
new_record = pd.DataFrame([[0, 'abcd', 0, 1, 123]], columns=['a', 'b', 'c', 'd', 'e'])
old_data_frame = pd.concat([old_data_frame, new_record])
Here is the way to add/append a row in a Pandas DataFrame:
def add_row(df, row):
df.loc[-1] = row
df.index = df.index + 1
return df.sort_index()
add_row(df, [1,2,3])
It can be used to insert/append a row in an empty or populated Pandas DataFrame.
If you want to add a row at the end, append it as a list:
valuestoappend = [va1, val2, val3]
res = res.append(pd.Series(valuestoappend, index = ['lib', 'qty1', 'qty2']), ignore_index = True)
Another way to do it (probably not very performant):
# add a row
def add_row(df, row):
colnames = list(df.columns)
ncol = len(colnames)
assert ncol == len(row), "Length of row must be the same as width of DataFrame: %s" % row
return df.append(pd.DataFrame([row], columns=colnames))
You can also enhance the DataFrame class like this:
import pandas as pd
def add_row(self, row):
self.loc[len(self.index)] = row
pd.DataFrame.add_row = add_row
All you need is loc[df.shape[0]] or loc[len(df)]
# Assuming your df has 4 columns (str, int, str, bool)
df.loc[df.shape[0]] = ['col1Value', 100, 'col3Value', False]
or
df.loc[len(df)] = ['col1Value', 100, 'col3Value', False]
You can concatenate two DataFrames for this. I basically came across this problem to add a new row to an existing DataFrame with a character index (not numeric).
So, I input the data for a new row in a duct() and index in a list.
new_dict = {put input for new row here}
new_list = [put your index here]
new_df = pd.DataFrame(data=new_dict, index=new_list)
df = pd.concat([existing_df, new_df])
initial_data = {'lib': np.array([1,2,3,4]), 'qty1': [1,2,3,4], 'qty2': [1,2,3,4]}
df = pd.DataFrame(initial_data)
df
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
val_1 = [10]
val_2 = [14]
val_3 = [20]
df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
0 10 14 20
You can use a for loop to iterate through values or can add arrays of values.
val_1 = [10, 11, 12, 13]
val_2 = [14, 15, 16, 17]
val_3 = [20, 21, 22, 43]
df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
0 10 14 20
1 11 15 21
2 12 16 22
3 13 17 43
Make it simple. By taking a list as input which will be appended as a row in the data-frame:
import pandas as pd
res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
for i in range(5):
res_list = list(map(int, input().split()))
res = res.append(pd.Series(res_list, index=['lib', 'qty1', 'qty2']), ignore_index=True)
pandas.DataFrame.append
DataFrame.append(self, other, ignore_index=False, verify_integrity=False, sort=False) → 'DataFrame'
Code
df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
df.append(df2)
With ignore_index set to True:
df.append(df2, ignore_index=True)
If you have a data frame df and want to add a list new_list as a new row to df, you can simply do:
df.loc[len(df)] = new_list
If you want to add a new data frame new_df under data frame df, then you can use:
df.append(new_df)
We often see the construct df.loc[subscript] = … to assign to one DataFrame row. Mikhail_Sam posted benchmarks containing, among others, this construct as well as the method using dict and create DataFrame in the end. He found the latter to be the fastest by far.
But if we replace the df3.loc[i] = … (with preallocated DataFrame) in his code with df3.values[i] = …, the outcome changes significantly, in that that method performs similar to the one using dict. So we should more often take the use of df.values[subscript] = … into consideration. However note that .values takes a zero-based subscript, which may be different from the DataFrame.index.
Before going to add a row, we have to convert the dataframe to a dictionary. There you can see the keys as columns in the dataframe and the values of the columns are again stored in the dictionary, but there the key for every column is the index number in the dataframe.
That idea makes me to write the below code.
df2 = df.to_dict()
values = ["s_101", "hyderabad", 10, 20, 16, 13, 15, 12, 12, 13, 25, 26, 25, 27, "good", "bad"] # This is the total row that we are going to add
i = 0
for x in df.columns: # Here df.columns gives us the main dictionary key
df2[x][101] = values[i] # Here the 101 is our index number. It is also the key of the sub dictionary
i += 1
If all data in your Dataframe has the same dtype you might use a NumPy array. You can write rows directly into the predefined array and convert it to a dataframe at the end.
It seems to be even faster than converting a list of dicts.
import pandas as pd
import numpy as np
from string import ascii_uppercase
startTime = time.perf_counter()
numcols, numrows = 5, 10000
npdf = np.ones((numrows, numcols))
for row in range(numrows):
npdf[row, 0:] = np.random.randint(0, 100, (1, numcols))
df5 = pd.DataFrame(npdf, columns=list(ascii_uppercase[:numcols]))
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df5.shape)
This code snippet uses a list of dictionaries to update the data frame. It adds on to ShikharDua's and Mikhail_Sam's answers.
import pandas as pd
colour = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]
dict1={}
feat_list=[]
for x in colour:
for y in fruits:
# print(x, y)
dict1 = dict([('x',x),('y',y)])
# print(f'dict 1 {dict1}')
feat_list.append(dict1)
# print(f'feat_list {feat_list}')
feat_df=pd.DataFrame(feat_list)
feat_df.to_csv('feat1.csv')
How can I find the row for which the value of a specific column is maximal?
df.max() will give me the maximal value for each column, I don't know how to get the corresponding row.
Use the pandas idxmax function. It's straightforward:
>>> import pandas
>>> import numpy as np
>>> df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
>>> df
A B C
0 1.232853 -1.979459 -0.573626
1 0.140767 0.394940 1.068890
2 0.742023 1.343977 -0.579745
3 2.125299 -0.649328 -0.211692
4 -0.187253 1.908618 -1.862934
>>> df['A'].idxmax()
3
>>> df['B'].idxmax()
4
>>> df['C'].idxmax()
1
Alternatively you could also use numpy.argmax, such as numpy.argmax(df['A']) -- it provides the same thing, and appears at least as fast as idxmax in cursory observations.
idxmax() returns indices labels, not integers.
Example': if you have string values as your index labels, like rows 'a' through 'e', you might want to know that the max occurs in row 4 (not row 'd').
if you want the integer position of that label within the Index you have to get it manually (which can be tricky now that duplicate row labels are allowed).
HISTORICAL NOTES:
idxmax() used to be called argmax() prior to 0.11
argmax was deprecated prior to 1.0.0 and removed entirely in 1.0.0
back as of Pandas 0.16, argmax used to exist and perform the same function (though appeared to run more slowly than idxmax).
argmax function returned the integer position within the index of the row location of the maximum element.
pandas moved to using row labels instead of integer indices. Positional integer indices used to be very common, more common than labels, especially in applications where duplicate row labels are common.
For example, consider this toy DataFrame with a duplicate row label:
In [19]: dfrm
Out[19]:
A B C
a 0.143693 0.653810 0.586007
b 0.623582 0.312903 0.919076
c 0.165438 0.889809 0.000967
d 0.308245 0.787776 0.571195
e 0.870068 0.935626 0.606911
f 0.037602 0.855193 0.728495
g 0.605366 0.338105 0.696460
h 0.000000 0.090814 0.963927
i 0.688343 0.188468 0.352213
i 0.879000 0.105039 0.900260
In [20]: dfrm['A'].idxmax()
Out[20]: 'i'
In [21]: dfrm.iloc[dfrm['A'].idxmax()] # .ix instead of .iloc in older versions of pandas
Out[21]:
A B C
i 0.688343 0.188468 0.352213
i 0.879000 0.105039 0.900260
So here a naive use of idxmax is not sufficient, whereas the old form of argmax would correctly provide the positional location of the max row (in this case, position 9).
This is exactly one of those nasty kinds of bug-prone behaviors in dynamically typed languages that makes this sort of thing so unfortunate, and worth beating a dead horse over. If you are writing systems code and your system suddenly gets used on some data sets that are not cleaned properly before being joined, it's very easy to end up with duplicate row labels, especially string labels like a CUSIP or SEDOL identifier for financial assets. You can't easily use the type system to help you out, and you may not be able to enforce uniqueness on the index without running into unexpectedly missing data.
So you're left with hoping that your unit tests covered everything (they didn't, or more likely no one wrote any tests) -- otherwise (most likely) you're just left waiting to see if you happen to smack into this error at runtime, in which case you probably have to go drop many hours worth of work from the database you were outputting results to, bang your head against the wall in IPython trying to manually reproduce the problem, finally figuring out that it's because idxmax can only report the label of the max row, and then being disappointed that no standard function automatically gets the positions of the max row for you, writing a buggy implementation yourself, editing the code, and praying you don't run into the problem again.
You might also try idxmax:
In [5]: df = pandas.DataFrame(np.random.randn(10,3),columns=['A','B','C'])
In [6]: df
Out[6]:
A B C
0 2.001289 0.482561 1.579985
1 -0.991646 -0.387835 1.320236
2 0.143826 -1.096889 1.486508
3 -0.193056 -0.499020 1.536540
4 -2.083647 -3.074591 0.175772
5 -0.186138 -1.949731 0.287432
6 -0.480790 -1.771560 -0.930234
7 0.227383 -0.278253 2.102004
8 -0.002592 1.434192 -1.624915
9 0.404911 -2.167599 -0.452900
In [7]: df.idxmax()
Out[7]:
A 0
B 8
C 7
e.g.
In [8]: df.loc[df['A'].idxmax()]
Out[8]:
A 2.001289
B 0.482561
C 1.579985
Both above answers would only return one index if there are multiple rows that take the maximum value. If you want all the rows, there does not seem to have a function.
But it is not hard to do. Below is an example for Series; the same can be done for DataFrame:
In [1]: from pandas import Series, DataFrame
In [2]: s=Series([2,4,4,3],index=['a','b','c','d'])
In [3]: s.idxmax()
Out[3]: 'b'
In [4]: s[s==s.max()]
Out[4]:
b 4
c 4
dtype: int64
df.iloc[df['columnX'].argmax()]
argmax() would provide the index corresponding to the max value for the columnX. iloc can be used to get the row of the DataFrame df for this index.
A more compact and readable solution using query() is like this:
import pandas as pd
df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
print(df)
# find row with maximum A
df.query('A == A.max()')
It also returns a DataFrame instead of Series, which would be handy for some use cases.
Very simple: we have df as below and we want to print a row with max value in C:
A B C
x 1 4
y 2 10
z 5 9
In:
df.loc[df['C'] == df['C'].max()] # condition check
Out:
A B C
y 2 10
If you want the entire row instead of just the id, you can use df.nlargest and pass in how many 'top' rows you want and you can also pass in for which column/columns you want it for.
df.nlargest(2,['A'])
will give you the rows corresponding to the top 2 values of A.
use df.nsmallest for min values.
The direct ".argmax()" solution does not work for me.
The previous example provided by #ely
>>> import pandas
>>> import numpy as np
>>> df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
>>> df
A B C
0 1.232853 -1.979459 -0.573626
1 0.140767 0.394940 1.068890
2 0.742023 1.343977 -0.579745
3 2.125299 -0.649328 -0.211692
4 -0.187253 1.908618 -1.862934
>>> df['A'].argmax()
3
>>> df['B'].argmax()
4
>>> df['C'].argmax()
1
returns the following message :
FutureWarning: 'argmax' is deprecated, use 'idxmax' instead. The behavior of 'argmax'
will be corrected to return the positional maximum in the future.
Use 'series.values.argmax' to get the position of the maximum now.
So that my solution is :
df['A'].values.argmax()
mx.iloc[0].idxmax()
This one line of code will give you how to find the maximum value from a row in dataframe, here mx is the dataframe and iloc[0] indicates the 0th index.
Considering this dataframe
[In]: df = pd.DataFrame(np.random.randn(4,3),columns=['A','B','C'])
[Out]:
A B C
0 -0.253233 0.226313 1.223688
1 0.472606 1.017674 1.520032
2 1.454875 1.066637 0.381890
3 -0.054181 0.234305 -0.557915
Assuming one want to know the rows where column "C" is max, the following will do the work
[In]: df[df['C']==df['C'].max()])
[Out]:
A B C
1 0.472606 1.017674 1.520032
The idmax of the DataFrame returns the label index of the row with the maximum value and the behavior of argmax depends on version of pandas (right now it returns a warning). If you want to use the positional index, you can do the following:
max_row = df['A'].values.argmax()
or
import numpy as np
max_row = np.argmax(df['A'].values)
Note that if you use np.argmax(df['A']) behaves the same as df['A'].argmax().
Use:
data.iloc[data['A'].idxmax()]
data['A'].idxmax() -finds max value location in terms of row
data.iloc() - returns the row
If there are ties in the maximum values, then idxmax returns the index of only the first max value. For example, in the following DataFrame:
A B C
0 1 0 1
1 0 0 1
2 0 0 0
3 0 1 1
4 1 0 0
idxmax returns
A 0
B 3
C 0
dtype: int64
Now, if we want all indices corresponding to max values, then we could use max + eq to create a boolean DataFrame, then use it on df.index to filter out indexes:
out = df.eq(df.max()).apply(lambda x: df.index[x].tolist())
Output:
A [0, 4]
B [3]
C [0, 1, 3]
dtype: object
what worked for me is:
df[df['colX'] == df['colX'].max()
You then get the row in your df with the maximum value of colX.
Then if you just want the index you can add .index at the end of the query.