Given a surface point P at (1,0,0), a normal direction (1,1,0) as well as a point light source at (1,2,0). If we assume that the surface point P is perfectly diffuse, to what location would the light have to move to achieve a maximal reflection according to the formula for diffuse surfaces (Lambertian)?
I've tried by calculating the dot product between N and L2(a,b,c) and making it = 1 because of the max. reflection is achieved with cos(0) I think. But it didn't work because I couldn't find L2 please help.
To get maximal reflection from point P, we just need to put light source on normal from point P, so in parametric form (any t):
L = P + t * N(at P) = (1,0,0) + t * (1,1,0)
Related
Suppose I have a viewing plane vn, with an orientation q1 and a plane in the scene un with an orientation q2.
q1 and q2 are quaternions.
How would I find the unknown point ux, uy, uz such that proj_u_plane_vn is equal to a known point vx, vy, 0?
Would the problem be simpler by finding the relative orientation q2-q1?
Right now I'm trying to do it with i, j and k values, but it seems like overkill and I'm not seeing the answer pop out without doing inverse trig, not that I would mind that, but I'm looking for a more elegant solution.
Thanks in advance. :)
You have the following values:
vx, vy, vz; //These are the points in the viewing plane, which you know.
q1, q2; //The vectors describing the viewing and scene planes.
As you suspected, the trick to projection between planes is in using the relative orientations.
You should use your offsets (when you find the relative orientations) between planes to treat the scene plane as if it is offset from the front plane (the viewing plane). This is not only easier to visualize, but it will also make the answers which you looked up more relevant.
Knowing this, you can use your relative orientation to define n in the following equation:
q_proj = q - dot(q - p, n) * n
The projection of a point q = (x, y, z) onto a plane given by a point p = (a, b, c) and a normal n = (d, e, f).
Note that this answer was ripped from here: How do I find the orthogonal projection of a point onto a plane.
Could someone tell me if I've coded this correctly? This is my code for solving for the sides of a triangle given its perimeter, altitude, and angle (for the algebra see http://www.analyzemath.com/Geometry/challenge/triangle_per_alt_angle.html)
Prompt P
Prompt H
Prompt L [the angle]
(HP^2)/(2H(1+cos(L))+2Psin(L))→Y
(-P^2-2(1+cos(L))Y/(-2P)→Z
(Z+sqrt(Z^2-4Y))/2→N
[The same as above but Z-sqrt...]→R
If N>0
N→U
If R>0
R→U
Y/U→V
sqrt(U^2+V^2-2UVcos(L))→W
Disp U
Disp V
Disp W
Also, how would I fix this so that I can input angle = 90?
Also, in this code does it matter if the altitude is the one between b and c (refer to the website again)?
Thanks in advance
The code already works with L=90°.
Yes, the altitude must be the distance from point A to the base a between points B and C, forming a right-angle with that base. The derivation made that assumption, specifically with respect to the way it used h and a in the second area formula 1/2 h a. That exact formula would not apply if h was drawn differently.
The reason your second set of inputs resulted in a non-real answer is that sometimes a set of mathematical parameters can be inconsistent with each other and describe an impossible construct, and your P, h, and L values do exactly that. Specifically, they describe an impossible triangle.
Given an altitude h and angle L, the smallest perimeter P that can be achieved is an isosceles triangle split down the middle by h. With L=30, this would have perimeter P = a + b + c = 2h tan15 + h/cos15 + h/cos15, which, plugging in your h=3, results in P=7.819. You instead tried to use P=3+sqrt(3)=4.732. Try using various numbers less than 7.819 (plus a little; I've rounded here) and you'll see they all result in imaginary results. That's math telling you you're calculating something that cannot exist in reality.
If you fill in the missing close parenthesis between the Y and the / in line 5, then your code works perfectly.
I wrote the code slightly differently from you, here's what I did:
Prompt P
Prompt H
Prompt L
HP²/(2H(1+cos(L))+2Psin(L))→Y
(HP-Ysin(L))/H→Z
Z²-4Y→D
If D<0:Then
Disp "IMAGINARY"
Stop
End
(Z+√(D))/2→C
Y/C→B
P-(B+C)→A
Disp A
Disp B
Disp C
Edit: #Gabriel, there's nothing special (with respect to this question) about the angles 30-60-90; there is an infinite number of sets of P, h, and L inputs that describe such triangles. However, if you actually want to arrive at such triangles in the answer, you've actually changed the question; instead of just knowing one angle L plus P and h, you now know three angles (30-60-90) plus P and h. You've now over-specified the triangle, so that it is pretty well certain that a randomly generated set of inputs will describe an impossible triangle. As a contrived example, if you specified h as 0.0001 and P as 99999, then that's clearly impossible, because a triangle with a tiny altitude and fairly unextreme angles (which 30-60-90 are) cannot possibly achieve a perimeter many times its altitude.
If you want to start with just one of P or h, then you can derive equations to calculate all parameters of the triangle from the known P or h plus the knowledge of the 30-60-90 angles.
To give one example of this, if we assume that side a forms the base of the triangle between the 90° and 60° angles, then we have L=30 and (labelling the 60° angle as B) we have h=b, and you can get simple equations for all parameters:
P = a + h + c
sin60 = h/c
cos60 = a/c
=> P = c cos60 + c sin60 + c
P = c(cos60 + sin60 + 1)
c = P/(cos60 + sin60 + 1)
b = h = c sin60
a = c cos60
Plugging in P=100 we have
c = 100/(cos60 + sin60 + 1) = 42.265
b = h = 36.603
a = 21.132
If you plug in P=100, h=36.603, and L=30 into the code, you'll see you get these exact results.
Always optimize for speed, then size.
Further optimizing bgoldst's code:
Prompt P,H,L
HP²/(2H(1+cos(L))+2Psin(L
.5(Z+√((HP-sin(L)Ans)/H)²-4Ans
{Y/C→B,P-B-Ans,Ans
In 3D rendering (or geometry for that matter), in the rasterization algorithm, when you project the vertices of a triangle onto the screen and then find if a pixel overlaps the 2D triangle, you often need to find the depth or the z-coordinate of the triangle that the pixel overlaps. Generally, the method consists of computing the barycentric coordinates of the pixel in the 2D "projected" image of the triangle, and then use these coordinates to interpolate the triangle original vertices z-coordinates (before the vertices got projected).
Now it's written in all text books that you can't interpolate the vertices coordinates of the vertices directly but that you need to do this instead:
(sorry can't get Latex to work?)
1/z = w0 * 1/v0.z + w1 * 1/v1.z + w2 * 1/v2.z
Where w0, w1, and w2 are the barycentric coordinates of the "pixel" on the triangle.
Now, what I am looking after, are two things:
what would be the formal proof to show that interpolating z doesn't work?
what would be the formal proof to show that 1/z does the right thing?
To show this is not home work ;-) and that I have made some work on my own, I have found the following explanation for question 2.
Basically a triangle can be defined by a plane equation. Thus you can write:
Ax + By + Cz = D.
Then you isolate z to get z = (D - Ax - By)/C
Then you divide this formula by z as you would with a perspective divide and if you develop, regroup, etc. you get:
1/z = C/D + A/Dx/z + B/Dy/z.
Then we name C'=C/D B'=B/D and A'=A/D you get:
1/z = A'x/z + B'y/z + C'
It says that x/z and y/z are just the coordinates of the points on the triangles once projected on the screen and that the equation on the right is an "affine" function therefore 1/z is a linear function???
That doesn't seem like a demonstration to me? Or maybe it's the right idea, but can't really say how you can tell by just looking at the equation that this is an affine function. If you multiply all the terms you just get:
A'x + B'y + C'z = 1.
Which is just basically our original equations (just need to replace A' B' and C' with the proper term).
Not sure what you are trying to ask here, but if you look at:
1/z = A'x/z + B'y/z + C'
and rewrite it as:
1/z = A'u + B'v + C'
where (u,v) are screen coordinates of the triangle after perspective projection, you can see that the depth (z) of a point on the triangle is not linearly related to (u,v) but 1/depth is and that is what the textbooks are trying to teach you.
I'm trying to find the best way to get the most distant point of a circle from a specified point in 2D space. What I have found so far, is how to get the distance between the point and the circle position, but I'm not entirely sure how to expand this to find the most distant point of the circle.
The known variables are:
Point a
Point b (circle position)
Radius r (circle radius)
To find the distance between the point and the circle position, I have found this:
xd = x2 - x1
yd = y2 - y1
Distance = SquareRoot(xd * xd + yd * yd)
It seems to me, this is part of the solution. How would this be expanded to get the position of Point x in the below image?
As an additional but optional part of the question: I have read in some places that it would be possible to get the distance portion without using the Square Root, which is very performance intensive and should be avoided if fast code is necessary. In my case, I would be doing this calculation quite often; Any comments on this within the context of the main question would be welcome too.
What about this?
Calculate A-B.
We now have a vector pointing from the center of the circle towards A (if B is the origin, skip this and just consider point A a vector).
Normalize.
Now we have a well defined length (the length is 1)
If the circle is not of unit radius, multiply by radius. If it is unit radius, skip this.
Now we have the correct length.
Invert sign (can be done in one step with 3., just multiply with the negative radius)
Now our vector points in the correct direction.
Add B (if B is the origin, skip this).
Now our vector is offset correctly so its endpoint is the point we want.
(Alternatively, you could calculate B-A to save the negation, but then you have to do one more operation to offset the origin correctly.)
By the way, it works the same in 3D, except the circle would be a sphere, and the vectors would have 3 components (or 4, if you use homogenous coords, in this case remember -- for correctness -- setting w to 0 when "turning points into vectors" and to 1 at the end when making a point from the vector).
EDIT:
(in reply of pseudocode)
Assuming you have a vec2 class which is a struct of two float numbers with operators for vector subtraction and scalar multiplicaion (pretty trivial, around a dozen lines of code) and a function normalize which needs to be no more than a shorthand for multiplying with inv_sqrt(x*x+y*y), the pseudocode (my pseudocode here is something like a C++/GLSL mix) could look something like this:
vec2 most_distant_on_circle(vec2 const& B, float r, vec2 const& A)
{
vec2 P(A - B);
normalize(P);
return -r * P + B;
}
Most math libraries that you'd use should have all of these functions and types built-in. HLSL and GLSL have them as first type primitives and intrinsic functions. Some GPUs even have a dedicated normalize instruction.
Given two image buffers (assume it's an array of ints of size width * height, with each element a color value), how can I map an area defined by a quadrilateral from one image buffer into the other (always square) image buffer? I'm led to understand this is called "projective transformation".
I'm also looking for a general (not language- or library-specific) way of doing this, such that it could be reasonably applied in any language without relying on "magic function X that does all the work for me".
An example: I've written a short program in Java using the Processing library (processing.org) that captures video from a camera. During an initial "calibrating" step, the captured video is output directly into a window. The user then clicks on four points to define an area of the video that will be transformed, then mapped into the square window during subsequent operation of the program. If the user were to click on the four points defining the corners of a door visible at an angle in the camera's output, then this transformation would cause the subsequent video to map the transformed image of the door to the entire area of the window, albeit somewhat distorted.
Using linear algebra is much easier than all that geometry! Plus you won't need to use sine, cosine, etc, so you can store each number as a rational fraction and get the exact numerical result if you need it.
What you want is a mapping from your old (x,y) co-ordinates to your new (x',y') co-ordinates. You can do it with matrices. You need to find the 2-by-4 projection matrix P such that P times the old coordinates equals the new co-ordinates. We'll assume that you're mapping lines to lines (not, for instance, straight lines to parabolas). Because you have a projection (parallel lines don't stay parallel) and translation (sliding), you need a factor of (xy) and (1), too. Drawn as matrices:
[x ]
[a b c d]*[y ] = [x']
[e f g h] [x*y] [y']
[1 ]
You need to know a through h so solve these equations:
a*x_0 + b*y_0 + c*x_0*y_0 + d = i_0
a*x_1 + b*y_1 + c*x_1*y_1 + d = i_1
a*x_2 + b*y_2 + c*x_2*y_2 + d = i_2
a*x_3 + b*y_3 + c*x_3*y_3 + d = i_3
e*x_0 + f*y_0 + g*x_0*y_0 + h = j_0
e*x_1 + f*y_1 + g*x_1*y_1 + h = j_1
e*x_2 + f*y_2 + g*x_2*y_2 + h = j_2
e*x_3 + f*y_3 + g*x_3*y_3 + h = j_3
Again, you can use linear algebra:
[x_0 y_0 x_0*y_0 1] [a e] [i_0 j_0]
[x_1 y_1 x_1*y_1 1] * [b f] = [i_1 j_1]
[x_2 y_2 x_2*y_2 1] [c g] [i_2 j_2]
[x_3 y_3 x_3*y_3 1] [d h] [i_3 j_3]
Plug in your corners for x_n,y_n,i_n,j_n. (Corners work best because they are far apart to decrease the error if you're picking the points from, say, user-clicks.) Take the inverse of the 4x4 matrix and multiply it by the right side of the equation. The transpose of that matrix is P. You should be able to find functions to compute a matrix inverse and multiply online.
Where you'll probably have bugs:
When computing, remember to check for division by zero. That's a sign that your matrix is not invertible. That might happen if you try to map one (x,y) co-ordinate to two different points.
If you write your own matrix math, remember that matrices are usually specified row,column (vertical,horizontal) and screen graphics are x,y (horizontal,vertical). You're bound to get something wrong the first time.
EDIT
The assumption below of the invariance of angle ratios is incorrect. Projective transformations instead preserve cross-ratios and incidence. A solution then is:
Find the point C' at the intersection of the lines defined by the segments AD and CP.
Find the point B' at the intersection of the lines defined by the segments AD and BP.
Determine the cross-ratio of B'DAC', i.e. r = (BA' * DC') / (DA * B'C').
Construct the projected line F'HEG'. The cross-ratio of these points is equal to r, i.e. r = (F'E * HG') / (HE * F'G').
F'F and G'G will intersect at the projected point Q so equating the cross-ratios and knowing the length of the side of the square you can determine the position of Q with some arithmetic gymnastics.
Hmmmm....I'll take a stab at this one. This solution relies on the assumption that ratios of angles are preserved in the transformation. See the image for guidance (sorry for the poor image quality...it's REALLY late). The algorithm only provides the mapping of a point in the quadrilateral to a point in the square. You would still need to implement dealing with multiple quad points being mapped to the same square point.
Let ABCD be a quadrilateral where A is the top-left vertex, B is the top-right vertex, C is the bottom-right vertex and D is the bottom-left vertex. The pair (xA, yA) represent the x and y coordinates of the vertex A. We are mapping points in this quadrilateral to the square EFGH whose side has length equal to m.
Compute the lengths AD, CD, AC, BD and BC:
AD = sqrt((xA-xD)^2 + (yA-yD)^2)
CD = sqrt((xC-xD)^2 + (yC-yD)^2)
AC = sqrt((xA-xC)^2 + (yA-yC)^2)
BD = sqrt((xB-xD)^2 + (yB-yD)^2)
BC = sqrt((xB-xC)^2 + (yB-yC)^2)
Let thetaD be the angle at the vertex D and thetaC be the angle at the vertex C. Compute these angles using the cosine law:
thetaD = arccos((AD^2 + CD^2 - AC^2) / (2*AD*CD))
thetaC = arccos((BC^2 + CD^2 - BD^2) / (2*BC*CD))
We map each point P in the quadrilateral to a point Q in the square. For each point P in the quadrilateral, do the following:
Find the distance DP:
DP = sqrt((xP-xD)^2 + (yP-yD)^2)
Find the distance CP:
CP = sqrt((xP-xC)^2 + (yP-yC)^2)
Find the angle thetaP1 between CD and DP:
thetaP1 = arccos((DP^2 + CD^2 - CP^2) / (2*DP*CD))
Find the angle thetaP2 between CD and CP:
thetaP2 = arccos((CP^2 + CD^2 - DP^2) / (2*CP*CD))
The ratio of thetaP1 to thetaD should be the ratio of thetaQ1 to 90. Therefore, calculate thetaQ1:
thetaQ1 = thetaP1 * 90 / thetaD
Similarly, calculate thetaQ2:
thetaQ2 = thetaP2 * 90 / thetaC
Find the distance HQ:
HQ = m * sin(thetaQ2) / sin(180-thetaQ1-thetaQ2)
Finally, the x and y position of Q relative to the bottom-left corner of EFGH is:
x = HQ * cos(thetaQ1)
y = HQ * sin(thetaQ1)
You would have to keep track of how many colour values get mapped to each point in the square so that you can calculate an average colour for each of those points.
I think what you're after is a planar homography, have a look at these lecture notes:
http://www.cs.utoronto.ca/~strider/vis-notes/tutHomography04.pdf
If you scroll down to the end you'll see an example of just what you're describing. I expect there's a function in the Intel OpenCV library which will do just this.
There is a C++ project on CodeProject that includes source for projective transformations of bitmaps. The maths are on Wikipedia here. Note that so far as i know, a projective transformation will not map any arbitrary quadrilateral onto another, but will do so for triangles, you may also want to look up skewing transforms.
If this transformation has to look good (as opposed to the way a bitmap looks if you resize it in Paint), you can't just create a formula that maps destination pixels to source pixels. Values in the destination buffer have to be based on a complex averaging of nearby source pixels or else the results will be highly pixelated.
So unless you want to get into some complex coding, use someone else's magic function, as smacl and Ian have suggested.
Here's how would do it in principle:
map the origin of A to the origin of B via a traslation vector t.
take unit vectors of A (1,0) and (0,1) and calculate how they would be mapped onto the unit vectors of B.
this gives you a transformation matrix M so that every vector a in A maps to M a + t
invert the matrix and negate the traslation vector so for every vector b in B you have the inverse mapping b -> M-1 (b - t)
once you have this transformation, for each point in the target area in B, find the corresponding in A and copy.
The advantage of this mapping is that you only calculate the points you need, i.e. you loop on the target points, not the source points. It was a widely used technique in the "demo coding" scene a few years back.