Projective transformation - graphics

Given two image buffers (assume it's an array of ints of size width * height, with each element a color value), how can I map an area defined by a quadrilateral from one image buffer into the other (always square) image buffer? I'm led to understand this is called "projective transformation".
I'm also looking for a general (not language- or library-specific) way of doing this, such that it could be reasonably applied in any language without relying on "magic function X that does all the work for me".
An example: I've written a short program in Java using the Processing library (processing.org) that captures video from a camera. During an initial "calibrating" step, the captured video is output directly into a window. The user then clicks on four points to define an area of the video that will be transformed, then mapped into the square window during subsequent operation of the program. If the user were to click on the four points defining the corners of a door visible at an angle in the camera's output, then this transformation would cause the subsequent video to map the transformed image of the door to the entire area of the window, albeit somewhat distorted.

Using linear algebra is much easier than all that geometry! Plus you won't need to use sine, cosine, etc, so you can store each number as a rational fraction and get the exact numerical result if you need it.
What you want is a mapping from your old (x,y) co-ordinates to your new (x',y') co-ordinates. You can do it with matrices. You need to find the 2-by-4 projection matrix P such that P times the old coordinates equals the new co-ordinates. We'll assume that you're mapping lines to lines (not, for instance, straight lines to parabolas). Because you have a projection (parallel lines don't stay parallel) and translation (sliding), you need a factor of (xy) and (1), too. Drawn as matrices:
[x ]
[a b c d]*[y ] = [x']
[e f g h] [x*y] [y']
[1 ]
You need to know a through h so solve these equations:
a*x_0 + b*y_0 + c*x_0*y_0 + d = i_0
a*x_1 + b*y_1 + c*x_1*y_1 + d = i_1
a*x_2 + b*y_2 + c*x_2*y_2 + d = i_2
a*x_3 + b*y_3 + c*x_3*y_3 + d = i_3
e*x_0 + f*y_0 + g*x_0*y_0 + h = j_0
e*x_1 + f*y_1 + g*x_1*y_1 + h = j_1
e*x_2 + f*y_2 + g*x_2*y_2 + h = j_2
e*x_3 + f*y_3 + g*x_3*y_3 + h = j_3
Again, you can use linear algebra:
[x_0 y_0 x_0*y_0 1] [a e] [i_0 j_0]
[x_1 y_1 x_1*y_1 1] * [b f] = [i_1 j_1]
[x_2 y_2 x_2*y_2 1] [c g] [i_2 j_2]
[x_3 y_3 x_3*y_3 1] [d h] [i_3 j_3]
Plug in your corners for x_n,y_n,i_n,j_n. (Corners work best because they are far apart to decrease the error if you're picking the points from, say, user-clicks.) Take the inverse of the 4x4 matrix and multiply it by the right side of the equation. The transpose of that matrix is P. You should be able to find functions to compute a matrix inverse and multiply online.
Where you'll probably have bugs:
When computing, remember to check for division by zero. That's a sign that your matrix is not invertible. That might happen if you try to map one (x,y) co-ordinate to two different points.
If you write your own matrix math, remember that matrices are usually specified row,column (vertical,horizontal) and screen graphics are x,y (horizontal,vertical). You're bound to get something wrong the first time.

EDIT
The assumption below of the invariance of angle ratios is incorrect. Projective transformations instead preserve cross-ratios and incidence. A solution then is:
Find the point C' at the intersection of the lines defined by the segments AD and CP.
Find the point B' at the intersection of the lines defined by the segments AD and BP.
Determine the cross-ratio of B'DAC', i.e. r = (BA' * DC') / (DA * B'C').
Construct the projected line F'HEG'. The cross-ratio of these points is equal to r, i.e. r = (F'E * HG') / (HE * F'G').
F'F and G'G will intersect at the projected point Q so equating the cross-ratios and knowing the length of the side of the square you can determine the position of Q with some arithmetic gymnastics.
Hmmmm....I'll take a stab at this one. This solution relies on the assumption that ratios of angles are preserved in the transformation. See the image for guidance (sorry for the poor image quality...it's REALLY late). The algorithm only provides the mapping of a point in the quadrilateral to a point in the square. You would still need to implement dealing with multiple quad points being mapped to the same square point.
Let ABCD be a quadrilateral where A is the top-left vertex, B is the top-right vertex, C is the bottom-right vertex and D is the bottom-left vertex. The pair (xA, yA) represent the x and y coordinates of the vertex A. We are mapping points in this quadrilateral to the square EFGH whose side has length equal to m.
Compute the lengths AD, CD, AC, BD and BC:
AD = sqrt((xA-xD)^2 + (yA-yD)^2)
CD = sqrt((xC-xD)^2 + (yC-yD)^2)
AC = sqrt((xA-xC)^2 + (yA-yC)^2)
BD = sqrt((xB-xD)^2 + (yB-yD)^2)
BC = sqrt((xB-xC)^2 + (yB-yC)^2)
Let thetaD be the angle at the vertex D and thetaC be the angle at the vertex C. Compute these angles using the cosine law:
thetaD = arccos((AD^2 + CD^2 - AC^2) / (2*AD*CD))
thetaC = arccos((BC^2 + CD^2 - BD^2) / (2*BC*CD))
We map each point P in the quadrilateral to a point Q in the square. For each point P in the quadrilateral, do the following:
Find the distance DP:
DP = sqrt((xP-xD)^2 + (yP-yD)^2)
Find the distance CP:
CP = sqrt((xP-xC)^2 + (yP-yC)^2)
Find the angle thetaP1 between CD and DP:
thetaP1 = arccos((DP^2 + CD^2 - CP^2) / (2*DP*CD))
Find the angle thetaP2 between CD and CP:
thetaP2 = arccos((CP^2 + CD^2 - DP^2) / (2*CP*CD))
The ratio of thetaP1 to thetaD should be the ratio of thetaQ1 to 90. Therefore, calculate thetaQ1:
thetaQ1 = thetaP1 * 90 / thetaD
Similarly, calculate thetaQ2:
thetaQ2 = thetaP2 * 90 / thetaC
Find the distance HQ:
HQ = m * sin(thetaQ2) / sin(180-thetaQ1-thetaQ2)
Finally, the x and y position of Q relative to the bottom-left corner of EFGH is:
x = HQ * cos(thetaQ1)
y = HQ * sin(thetaQ1)
You would have to keep track of how many colour values get mapped to each point in the square so that you can calculate an average colour for each of those points.

I think what you're after is a planar homography, have a look at these lecture notes:
http://www.cs.utoronto.ca/~strider/vis-notes/tutHomography04.pdf
If you scroll down to the end you'll see an example of just what you're describing. I expect there's a function in the Intel OpenCV library which will do just this.

There is a C++ project on CodeProject that includes source for projective transformations of bitmaps. The maths are on Wikipedia here. Note that so far as i know, a projective transformation will not map any arbitrary quadrilateral onto another, but will do so for triangles, you may also want to look up skewing transforms.

If this transformation has to look good (as opposed to the way a bitmap looks if you resize it in Paint), you can't just create a formula that maps destination pixels to source pixels. Values in the destination buffer have to be based on a complex averaging of nearby source pixels or else the results will be highly pixelated.
So unless you want to get into some complex coding, use someone else's magic function, as smacl and Ian have suggested.

Here's how would do it in principle:
map the origin of A to the origin of B via a traslation vector t.
take unit vectors of A (1,0) and (0,1) and calculate how they would be mapped onto the unit vectors of B.
this gives you a transformation matrix M so that every vector a in A maps to M a + t
invert the matrix and negate the traslation vector so for every vector b in B you have the inverse mapping b -> M-1 (b - t)
once you have this transformation, for each point in the target area in B, find the corresponding in A and copy.
The advantage of this mapping is that you only calculate the points you need, i.e. you loop on the target points, not the source points. It was a widely used technique in the "demo coding" scene a few years back.

Related

corners of angled rect in 3d

Ive got 2 points in 3d space (with the same y coordinate). Ill call them c and m. I want to find the corner points (marked in the pic as p1-p4) of a square with the width w. The important thing is, that the square is not parallel to the x-axis. If it were, (for p1 as an example) I could just do:
p1.x = m.x + w / 2
p1.y = m.y + w / 2
p1.z = m.z
How would I do the same with a angled square? These are all the given points:
m; c
and lenghts:
w; d
There's multiple ways to do it, but here's one way.
If the two points are guaranteed to have the same y value, you should be able to do it as follows.
Take 'm - c' and call that u. Normalize u. Then take the cross product of u and the y axis to get v, a vector parallel to the xz plane that's perpendicular to u. (This can be optimized, but that's unlikely to be important.) Then take the cross product of u and v to get a third vector, w. Note that you can use 'm - c' or 'c - m', or use different orders for the cross-product arguments, and it'll still work, but the resulting vectors may point in different directions (but only opposite directions). You can also normalize at different points in the process and get the same results at the end.
Once you have m, v, and w, you can use some basic vector math to compute the corners.
[Edit: I see you have a variable named 'w', so I should clarify that the 'w' in my example is a different 'w' than yours. As for your 'w' and 'd', those would factor in in the vector math I mentioned at the end.]

Perspective Projection: Proving that 1/z is Linear?

In 3D rendering (or geometry for that matter), in the rasterization algorithm, when you project the vertices of a triangle onto the screen and then find if a pixel overlaps the 2D triangle, you often need to find the depth or the z-coordinate of the triangle that the pixel overlaps. Generally, the method consists of computing the barycentric coordinates of the pixel in the 2D "projected" image of the triangle, and then use these coordinates to interpolate the triangle original vertices z-coordinates (before the vertices got projected).
Now it's written in all text books that you can't interpolate the vertices coordinates of the vertices directly but that you need to do this instead:
(sorry can't get Latex to work?)
1/z = w0 * 1/v0.z + w1 * 1/v1.z + w2 * 1/v2.z
Where w0, w1, and w2 are the barycentric coordinates of the "pixel" on the triangle.
Now, what I am looking after, are two things:
what would be the formal proof to show that interpolating z doesn't work?
what would be the formal proof to show that 1/z does the right thing?
To show this is not home work ;-) and that I have made some work on my own, I have found the following explanation for question 2.
Basically a triangle can be defined by a plane equation. Thus you can write:
Ax + By + Cz = D.
Then you isolate z to get z = (D - Ax - By)/C
Then you divide this formula by z as you would with a perspective divide and if you develop, regroup, etc. you get:
1/z = C/D + A/Dx/z + B/Dy/z.
Then we name C'=C/D B'=B/D and A'=A/D you get:
1/z = A'x/z + B'y/z + C'
It says that x/z and y/z are just the coordinates of the points on the triangles once projected on the screen and that the equation on the right is an "affine" function therefore 1/z is a linear function???
That doesn't seem like a demonstration to me? Or maybe it's the right idea, but can't really say how you can tell by just looking at the equation that this is an affine function. If you multiply all the terms you just get:
A'x + B'y + C'z = 1.
Which is just basically our original equations (just need to replace A' B' and C' with the proper term).
Not sure what you are trying to ask here, but if you look at:
1/z = A'x/z + B'y/z + C'
and rewrite it as:
1/z = A'u + B'v + C'
where (u,v) are screen coordinates of the triangle after perspective projection, you can see that the depth (z) of a point on the triangle is not linearly related to (u,v) but 1/depth is and that is what the textbooks are trying to teach you.

How to draw the normal to the plane in PCL

I have the plane equation describing the points belonging to a plane in 3D and the origin of the normal X, Y, Z. This should be enough to be able to generate something like a 3D arrow. In pcl this is possible via the viewer but I would like to actually store those 3D points inside the cloud. How to generate them then ? A cylinder with a cone on top ?
To generate a line perpendicular to the plane:
You have the plane equation. This gives you the direction of the normal to the plane. If you used PCL to get the plane, this is in ModelCoefficients. See the details here: SampleConsensusModelPerpendicularPlane
The first step is to make a line perpendicular to the normal at the point you mention (X,Y,Z). Let (NORMAL_X,NORMAL_Y,NORMAL_Z) be the normal you got from your plane equation. Something like.
pcl::PointXYZ pnt_on_line;
for(double distfromstart=0.0;distfromstart<LINE_LENGTH;distfromstart+=DISTANCE_INCREMENT){
pnt_on_line.x = X + distfromstart*NORMAL_X;
pnt_on_line.y = Y + distfromstart*NORMAL_Y;
pnt_on_line.z = Z + distfromstart*NORMAL_Z;
my_cloud.points.push_back(pnt_on_line);
}
Now you want to put a hat on your arrow and now pnt_on_line contains the end of the line exactly where you want to put it. To make the cone you could loop over angle and distance along the arrow, calculate a local x and y and z from that and convert them to points in point cloud space: the z part would be converted into your point cloud's frame of reference by multiplying with the normal vector as with above, the x and y would be multiplied into vectors perpendicular to this normal vectorE. To get these, choose an arbitrary unit vector perpendicular to the normal vector (for your x axis) and cross product it with the normal vector to find the y axis.
The second part of this explanation is fairly terse but the first part may be the more important.
Update
So possibly the best way to describe how to do the cone is to start with a cylinder, which is an extension of the line described above. In the case of the line, there is (part of) a one dimensional manifold embedded in 3D space. That is we have one variable that we loop over adding points. The cylinder is a two dimensional object so we have to loop over two dimensions: the angle and the distance. In the case of the line we already have the distance. So the above loop would now look like:
for(double distfromstart=0.0;distfromstart<LINE_LENGTH;distfromstart+=DISTANCE_INCREMENT){
for(double angle=0.0;angle<2*M_PI;angle+=M_PI/8){
//calculate coordinates of point and add to cloud
}
}
Now in order to calculate the coordinates of the new point, well we already have the point on the line, now we just need to add it to a vector to move it away from the line in the appropriate direction of the angle. Let's say the radius of our cylinder will be 0.1, and let's say an orthonormal basis that we have already calculated perpendicular to the normal of the plane (which we will see how to calculate later) is perpendicular_1 and perpendicular_2 (that is, two vectors perpendicular to each other, of length 1, also perpendicular to the vector (NORMAL_X,NORMAL_Y,NORMAL_Z)):
//calculate coordinates of point and add to cloud
pnt_on_cylinder.x = pnt_on_line.x + 0.1 * perpendicular_1.x * 0.1 * cos(angle) + perpendicular_2.x * sin(angle)
pnt_on_cylinder.y = pnt_on_line.y + perpendicular_1.y * 0.1 * cos(angle) + perpendicular_2.y * 0.1 * sin(angle)
pnt_on_cylinder.z = pnt_on_line.z + perpendicular_1.z * 0.1 * cos(angle) + perpendicular_2.z * 0.1 * sin(angle)
my_cloud.points.push_back(pnt_on_cylinder);
Actually, this is a vector summation and if we were to write the operation as vectors it would look like:
pnt_on_line+perpendicular_1*cos(angle)+perpendicular_2*sin(angle)
Now I said I would talk about how to calculate perpendicular_1 and perpendicular_2. Let K be any unit vector that is not parallel to (NORMAL_X,NORMAL_Y,NORMAL_Z) (this can be found by trying e.g. (1,0,0) then (0,1,0)).
Then
perpendicular_1 = K X (NORMAL_X,NORMAL_Y,NORMAL_Z)
perpendicular_2 = perpendicular_1 X (NORMAL_X,NORMAL_Y,NORMAL_Z)
Here X is the vector cross product and the above are vector equations. Note also that the original calculation of pnt_on_line involved a vector dot product and a vector summation (I am just writing this for completeness of the exposition).
If you can manage this then the cone is easy just by changing a couple of things in the double loop: the radius just changes along its length until it is zero at the end of the loop and in the loop distfromstart will not start at 0.

Best fit square to quadrilateral

I've got a shape consisting of four points, A, B, C and D, of which the only their position is known. The goal is to transform these points to have specific angles and offsets relative to each other.
For example: A(-1,-1) B(2,-1) C(1,1) D(-2,1), which should be transformed to a perfect square (all angles 90) with offsets between AB, BC, CD and AD all being 2. The result should be a square slightly rotated counter-clockwise.
What would be the most efficient way to do this?
I'm using this for a simple block simulation program.
As Mark alluded, we can use constrained optimization to find the side 2 square that minimizes the square of the distance to the corners of the original.
We need to minimize f = (a-A)^2 + (b-B)^2 + (c-C)^2 + (d-D)^2 (where the square is actually a dot product of the vector argument with itself) subject to some constraints.
Following the method of Lagrange multipliers, I chose the following distance constraints:
g1 = (a-b)^2 - 4
g2 = (c-b)^2 - 4
g3 = (d-c)^2 - 4
and the following angle constraints:
g4 = (b-a).(c-b)
g5 = (c-b).(d-c)
A quick napkin sketch should convince you that these constraints are sufficient.
We then want to minimize f subject to the g's all being zero.
The Lagrange function is:
L = f + Sum(i = 1 to 5, li gi)
where the lis are the Lagrange multipliers.
The gradient is non-linear, so we have to take a hessian and use multivariate Newton's method to iterate to a solution.
Here's the solution I got (red) for the data given (black):
This took 5 iterations, after which the L2 norm of the step was 6.5106e-9.
While Codie CodeMonkey's solution is a perfectly valid one (and a great use case for the Lagrangian Multipliers at that), I believe that it's worth mentioning that if the side length is not given this particular problem actually has a closed form solution.
We would like to minimise the distance between the corners of our fitted square and the ones of the given quadrilateral. This is equivalent to minimising the cost function:
f(x1,...,y4) = (x1-ax)^2+(y1-ay)^2 + (x2-bx)^2+(y2-by)^2 +
(x3-cx)^2+(y3-cy)^2 + (x4-dx)^2+(y4-dy)^2
Where Pi = (xi,yi) are the corners of the fitted square and A = (ax,ay) through D = (dx,dy) represent the given corners of the quadrilateral in clockwise order. Since we are fitting a square we have certain contraints regarding the positions of the four corners. Actually, if two opposite corners are given, they are enough to describe a unique square (save for the mirror image on the diagonal).
Parametrization of the points
This means that two opposite corners are enough to represent our target square. We can parametrise the two remaining corners using the components of the first two. In the above example we express P2 and P4 in terms of P1 = (x1,y1) and P3 = (x3,y3). If you need a visualisation of the geometrical intuition behind the parametrisation of a square you can play with the interactive version.
P2 = (x2,y2) = ( (x1+x3-y3+y1)/2 , (y1+y3-x1+x3)/2 )
P4 = (x4,y4) = ( (x1+x3+y3-y1)/2 , (y1+y3+x1-x3)/2 )
Substituting for x2,x4,y2,y4 means that f(x1,...,y4) can be rewritten to:
f(x1,x3,y1,y3) = (x1-ax)^2+(y1-ay)^2 + ((x1+x3-y3+y1)/2-bx)^2+((y1+y3-x1+x3)/2-by)^2 +
(x3-cx)^2+(y3-cy)^2 + ((x1+x3+y3-y1)/2-dx)^2+((y1+y3+x1-x3)/2-dy)^2
a function which only depends on x1,x3,y1,y3. To find the minimum of the resulting function we then set the partial derivatives of f(x1,x3,y1,y3) equal to zero. They are the following:
df/dx1 = 4x1-dy-dx+by-bx-2ax = 0 --> x1 = ( dy+dx-by+bx+2ax)/4
df/dx3 = 4x3+dy-dx-by-bx-2cx = 0 --> x3 = (-dy+dx+by+bx+2cx)/4
df/dy1 = 4y1-dy+dx-by-bx-2ay = 0 --> y1 = ( dy-dx+by+bx+2ay)/4
df/dy3 = 4y3-dy-dx-2cy-by+bx = 0 --> y3 = ( dy+dx+by-bx+2cy)/4
You may see where this is going, as simple rearrangment of the terms leads to the final solution.
Final solution

Transforming a 3D plane using a 4x4 matrix

I have a shape made out of several triangles which is positioned somewhere in world space with scale, rotate, translate. I also have a plane on which I would like to project (orthogonal) the shape.
I could multiply every vertex of every triangle in the shape with the objects transformation matrix to find out where it is located in world coordinates, and then project this point onto the plane.
But I don't need to draw the projection, and instead I would like to transform the plane with the inverse transformation matrix of the shape, and then project all the vertices onto the (inverse transformed) plane. Since it only requires me to transform the plane once and not every vertex.
My plane has a normal (xyz) and a distance (d). How do I multiply it with a 4x4 transformation matrix so that it turns out ok?
Can you create a vec4 as xyzd and multiply that? Or maybe create a vector xyz1 and then what to do with d?
You need to convert your plane to a different representation. One where N is the normal, and O is any point on the plane. The normal you already know, it's your (xyz). A point on the plane is also easy, it's your normal N times your distance d.
Transform O by the 4x4 matrix in the normal way, this becomes your new O. You will need a Vector4 to multiply with a 4x4 matrix, set the W component to 1 (x, y, z, 1).
Also transform N by the 4x4 matrix, but set the W component to 0 (x, y, z, 0). Setting the W component to 0 means that your normals won't get translated. If your matrix is composed of more that just translating and rotating, then this step isn't so simple. Instead of multiplying by your transformation matrix, you have to multiply by the transpose of the inverse of the matrix i.e. Matrix4.Transpose(Matrix4.Invert(Transform)), there's a good explanation on why here.
You now have a new normal vector N and a new position vector O. However I suppose you want it in xyzd form again? No problem. As before, xyz is your normal N all that's left is to calculate d. d is the distance of the plane from the origin, along the normal vector. Hence, it is simply the dot product of O and N.
There you have it! If you tell me what language you're doing this in, I'd happily type it up in code as well.
EDIT, In pseudocode:
The plane is vector3 xyz and number d, the matrix is a matrix4x4 M
vector4 O = (xyz * d, 1)
vector4 N = (xyz, 0)
O = M * O
N = transpose(invert(M)) * N
xyz = N.xyz
d = dot(O.xyz, N.xyz)
xyz and d represent the new plane
This question is a bit old but I would like to correct the accepted answer.
You do not need to convert your plane representation.
Any point lies on the plane if
It can be written as dot product :
You are looking for the plane transformed by your 4x4 matrix .
For the same reason, you must have
So and with some arrangements
TLDR : if p=(a,b,c,d), p' = transpose(inverse(M))*p
Notation:
n is a normal represented as a (1x3) row-vector
n' is the transformed normal of n according to transform matrix T
(n|d) is a plane represented as a (1x4) row-vector (with n the plane's normal and d the plane's distance to the origin)
(n'|d') is the transformed plane of (n|d) according to transform matrix T
T is a (4x4) (affine) column-major transformation matrix (i.e. transforming a column-vector t is defined as t' = T t).
Transforming a normal n:
n' = n adj(T)
Transforming a plane (n|d):
(n'|d') = (n|d) adj(T)
Here, adj is the adjugate of a matrix which is defined as follows in terms of the inverse and determinant of a matrix:
T^-1 = adj(T)/det(T)
Note:
The adjugate is generally not equal to the inverse of a transformation matrix T. If T includes a reflection, det(T) = -1, reversing the winding order!
Re-normalizing n' is mathematically not required (but maybe numerically depending on the implementation) since scaling is taken care off by the determinant. Thanks to Adrian Leonhard.
You can directly transform the plane without first decomposing and recomposing a plane (normal and point).

Resources