How can i trace eating with mouth closed using Google ML Kit - android-studio
Currently i tried to calculate distance between UPPER_LIP_BOTTOM and LOWER_LIP_TOP, and i set the threshold value 23 (Calculated by minimum distance between both UPPER_LIP_BOTTOM and LOWER_LIP_TOP), if current distance go above the THRESHOLD it will show "Eating" but this method is not working when i am eating with my mouth closed.
You can experiment with a couple of things:
Take all the points in the mouth as the input and build a second ML classifier model (a single layer fully connected model might work).
In addition to above, take input from multiple frames. There maybe additional complication if the frames are not taken in regular intervals.
I am interested in the use-case, can you tell us more?
Related
Time series anomaly detection
I would like to get suggestions about a time series problem. The data is about strain gauge on the wing of flight which is measured using different sensors. Basically, we are creating the anomalies by simulating the physics model. We have a baseline which is working fine and then created some anomalies by changing some of the factors and recorded over time. Our aim is to create a model which can find out the anomaly during the live testing(it can be a crack on the wing), basically a real time anomaly detection using statistical methods or machine learning.
A few thoughts - sorted roughly from top-to-bottom based on time investiment (assuming little/no prior ML knowledge): start simple and validate: for what you've described this could be as simple as create a training / validation dataset using your simulator - since you can simulate, do so for significant episodes of both "standard" and extreme forces applied to the wing choose a real time smoother: e.g., exponential averaging or moving average, determine a proper parameter for each of your input sensor signals. smooth the input signals. determine threshold values: - create rough but sensible lower bound threshold values "by eye" - use simple statistics to determine a decent threshold value (e.g., using a moving fixed length window of appropriate size, and setting the threshold at a multiple of the standard deviation in that window slid across the entire signal) in either case, testing on further simulated (and - ideally also - real data) If an effort like this works "good enough" - stop and move on to next (facet of) problem. If not follow the first two steps (simulate and smooth data) take an "autoregressive" approach create training / validation input/output pairs by running a sliding window of fixed length over the input signal(s). train a simple supervised learner on thes pairs, for each input signal or all together, to produce a (set of) time series anamoly detectors trained on your simulated data. cross-validate with the validation portion of your data. use this model (or one like it) on your validation data to test performance - and ideall collect real data (not simulated) to validate your model even further on. If this sort of approach produces "good enough" results - stop, and move onto the next facet of the problem. If not - examine and try any number of anomoly detection approaches coded in a variety languages listed on an aggregator like the awesome repo for time series anomaly detection
Number of training samples for text classification tas
Suppose you have a set of transcribed customer service calls between customers and human agents, where on average each call's length is 7 minutes. Customers will mostly call because of issues they have with the product. Let's assume that a human can assign one label per axis per call: Axis 1: What was the problem from the customer's perspective? Axis 2: What was the problem from the agent's perspective? Axis 3: Could the agent resolve the customer's issue? Based on the manually labeled texts you want to train a text classifier that shall predict a label for each call for each of the three axes. But the labeling of recordings takes time and costs money. On the other hand you need a certain amount of training data to get good prediction results. Given the above assumptions, how many manually labeled training texts would you start with? And how do you know that you need more labeled training texts? Maybe you've worked on a similar task before and can give some advice. UPDATE (2018-01-19): There's no right or wrong answer to my question. Ok, ideally, somebody worked on exactly the same task, but that's very unlikely. I'll leave the question open for one more week and then accept the best answer.
This would be tricky to answer but I will try my best based on my experience. In the past, I have performed text classification on 3 datasets; the number in the bracket indicates how big my dataset was: restaurant reviews (50K sentences), reddit comments (250k sentences) and developer comments from issue tracking systems (10k sentences). Each of them had multiple labels as well. In each of the three cases, including the one with 10k sentences, I achieved an F1 score of more than 80%. I am stressing on this dataset specifically because I was told by some that the size is less for this dataset. So, in your case, assuming you have atleast 1000 instances (calls that include conversation between customer and agent) of average 7 minute calls, this should be a decent start. If the results are not satisfying, you have the following options: 1) Use different models (MNB, Random Forest, Decision Tree, and so on in addition to whatever you are using) 2) If point 1 gives more or less similar results, check the ratio of instances of all the classes you have (the 3 axis you are talking about here). If they do not share a good ratio, get more data or try out the different balancing techniques if you cannot get more data. 3) Another way would be to classify them at a sentence level than message or conversation level to generate more data and individual labels for sentences rather than message or the conversation itself.
Audio signal source separation with neural network
What I am trying to do is separating the audio sources and extract its pitch from the raw signal. I modeled this process myself, as represented below: Each sources oscillate in normal modes, often makes its component peaks' frequency integer multiplication. It's known as Harmonic. And then resonanced, finally combined linearly. As seen in above, I've got many hints in frequency response pattern of audio signals, but almost no idea how to 'separate' it. I've tried countless of my own models. This is one of them: FFT the PCM Get peak frequency bins and amplitudes. Calculate pitch candidate frequency bins. For each pitch candidates, using recurrent neural network analyze all the peaks and find appropriate combination of peaks. Separate analyzed pitch candidates. Unfortunately, I've got non of them successfully separates the signal until now. I want any of advices to solve these kind of problem. Especially in modeling of source separation like my one above.
Because no one has really attempted to answer this, and because you've marked it with the neural-network tag, I'm going to address the suitability of a neural network to this kind of problem. As the question was somewhat non-technical, this answer will also be "high level". Neural networks require some sort of sample set from which to learn. In order to "teach" a neural net to solve this problem you would essentially need to have a working set of known solutions to work from. Do you have this? If so, read on. If not, a neural is probably not what you are seeking. You stated that you have "many hints" but no real solution. This leads me to believe you probably don't have sample sets. If you can get them, great, otherwise you might be out of luck. Supposing now that you have a sample set of Raw Signal samples and corresponding Source 1 and Source 2 outputs... Well, now you're going to need a method for deciding on a topology. Assuming you don't know a lot about how neural nets work (and don't want to), and assuming you also don't know the exact degree of complexity of the problem, I would probably recommend the open source NEAT package to get you started. I am not affiliated in any way with this project, but I have used it, and it allows you to (relatively) intelligently evolve neural network topologies to fit the problem. Now, in terms of how a neural net would solve this specific problem. The first thing that comes to mind is that all audio signals are essentially time-series. That is to say, the information they convey is somehow dependent and related to the data at previous timesteps (e.g. the detection of some waveform cannot be done from a single time-point; it requires information about previous timesteps as well). Again, there's a million ways of solving this problem, but since I'm already recommending NEAT I'd probably suggest you take a look at the C++ NEAT Time Series mod. If you're going down this route, you'll probably be wanting to use some sort of sliding window to provide information about the recent past at each time step. For a quick and dirty intro to sliding windows, check out this SO question: Time Series Prediction via Neural Networks The size of the sliding window can be important, especially if you're not using recurrent neural nets. Recurrent networks allow neural nets to remember previous time steps (at the cost of performance - NEAT is already recurrent so that choice is made for you here). You will probably want the sliding window length (ie. the number of timesteps in the past provided at every time step) to be roughly equal to your conservative guess of the largest number of previous timesteps required to gain enough information to split your waveform. I'd say this is probably enough information to get you started. When it comes to deciding how to provide the neural net with the data, you'll first want to normalise the input signals (consider a sigmoid function) and experiment with different transfer functions (sigmoid would probably be a good starting point). I would imagine you'll want to have 2 output neurons, providing normalised amplitude (which you would denormalise via the inverse of the sigmoid function) as the output representing Source 1 and Source 2 respectively. For the fitness value (the way you judge the ability of each tested network to solve the problem) would be something along the lines of the negative of the RMS error of the output signal against the actual known signal (ie. tested against the samples I was referring to earlier that you will need to procure). Suffice to say, this will not be a trivial operation, but it could work if you have enough samples to train the network against. What is a good number of samples? Well as a rule of thumb it's roughly a number that is large enough such that a simple polynomial function of order N (where N is the number of neurons in the netural network you require to solve the problem) cannot fit all of the samples accurately. This is basically to ensure you are not simply overfitting the problem, which is a serious issue with neural networks. I hope this has been helpful! Best of luck. Additional note: your work to date wouldn't have been in vain if you go down this route. A neural network is likely to benefit from additional "help" in the form of FFTs and other signal modelling "inputs", so you might want to consider taking the signal processing you have already done, organising into an analog, continuous representation and feeding it as an input alongside the input signal.
I need a function that describes a set of sequences of zeros and ones?
I have multiple sets with a variable number of sequences. Each sequence is made of 64 numbers that are either 0 or 1 like so: Set A sequence 1: 0,0,0,0,0,0,1,1,0,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0 sequence 2: 0,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 sequence 3: 0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0 ... Set B sequence1: 0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1 sequence2: 0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,0 ... I would like to find a mathematical function that describes all possible sequences in the set, maybe even predict more and that does not contain the sequences in the other sets. I need this because I am trying to recognize different gestures in a mobile app based on the cells in a grid that have been touched (1 touch/ 0 no touch). The sets represent each gesture and the sequences a limited sample of variations in each gesture. Ideally the function describing the sequences in a set would allow me to test user touches against it to determine which set/gesture is part of. I searched for a solution, either using Excel or Mathematica, but being very ignorant about both and mathematics in general I am looking for the direction of an expert. Suggestions for basic documentation on the subject is also welcome.
It looks as if you are trying to treat what is essentially 2D data in 1D. For example, let s1 represent the first sequence in set A in your question. Then the command ArrayPlot[Partition[s1, 8]] produces this picture: The other sequences in the same set produce similar plots. One of the sequences from the second set produces, in response to the same operations, the picture: I don't know what sort of mathematical function you would like to define to describe these pictures, but I'm not sure that you need to if your objective is to recognise user gestures. You could do something much simpler, such as calculate the 'average' picture for each of your gestures. One way to do this would be to calculate the average value for each of the 64 pixels in each of the pictures. Perhaps there are 6 sequences in your set A describing gesture A. Sum the sequences element-by-element. You will now have a sequence with values ranging from 0 to 6. Divide each element by 6. Now each element represents a sort of probability that a new gesture, one you are trying to recognise, will touch that pixel. Repeat this for all the sets of sequences representing your set of gestures. To recognise a user gesture, simply compute the difference between the sequence representing the gesture and each of the sequences representing the 'average' gestures. The smallest (absolute) difference will direct you to the gesture the user made. I don't expect that this will be entirely foolproof, it may well result in some user gestures being ambiguous or not recognisable, and you may want to try something more sophisticated. But I think this approach is simple and probably adequate to get you started.
In Mathematica the following expression will enumerate all the possible combinations of {0,1} of length 64. Tuples[{1, 0}, {64}] But there are 2^62 or 18446744073709551616 of them, so I'm not sure what use that will be to you. Maybe you just wanted the unique sequences contained in each set, in that case all you need is the Mathematica Union[] function applied to the set. If you have a the sets grouped together in a list in Mathematica, say mySets, then you can apply the Union operator to every set in the list my using the map operator. Union/#mySets If you want to do some type of prediction a little more information might be useful. Thanks you for the clarifications. Machine Learning The task you want to solve falls under the disciplines known by a variety of names, but probably most commonly as Machine Learning or Pattern Recognition and if you know which examples represent the same gestures, your case would be known as supervised learning. Question: In your case do you know which gesture each example represents ? You have a series of examples for which you know a label ( the form of gesture it is ) from which you want to train a model and use that model to label an unseen example to one of a finite set of classes. In your case, one of a number of gestures. This is typically known as classification. Learning Resources There is a very extensive background of research on this topic, but a popular introduction to the subject is machine learning by Christopher Bishop. Stanford have a series of machine learning video lectures Standford ML available on the web. Accuracy You might want to consider how you will determine the accuracy of your system at predicting the type of gesture for an unseen example. Typically you train the model using some of your examples and then test its performance using examples the model has not seen. The two of the most common methods used to do this are 10 fold Cross Validation or repeated 50/50 holdout. Having a measure of accuracy enables you to compare one method against another to see which is superior. Have you thought about what level of accuracy you require in your task, is 70% accuracy enough, 85%, 99% or better? Machine learning methods are typically quite sensitive to the specific type of data you have and the amount of examples you have to train the system with, the more examples, generally the better the performance. You could try the method suggested above and compare it against a variety of well proven methods, amongst which would be Random Forests, support vector machines and Neural Networks. All of which and many more are available to download in a variety of free toolboxes. Toolboxes Mathematica is a wonderful system, is infinitely flexible and my favourite environment, but out of the box it doesn't have a great deal of support for machine learning. I suspect you will make a great deal of progress more quickly by using a custom toolbox designed for machine learning. Two of the most popular free toolboxes are WEKA and R both support more than 50 different methods for solving your task along with methods for measuring the accuracy of the solutions. With just a little data reformatting, you can convert your gestures to a simple file format called ARFF, load them into WEKA or R and experiment with dozens of different algorithms to see how each performs on your data. The explorer tool in WEKA is definitely the easiest to use, requiring little more than a few mouse clicks and typing some parameters to get started. Once you have an idea of how well the established methods perform on your data you have a good starting point to compare a customised approach against should they fail to meet your criteria. Handwritten Digit Recognition Your problem is similar to a very well researched machine learning problem known as hand written digit recognition. The methods that work well on this public data set of handwritten digits are likely to work well on your gestures.
Obstacle avoidance using 2 fixed cameras on a robot
I will be start working on a robotics project which involves a mobile robot that has mounted 2 cameras (1.3 MP) fixed at a distance of 0.5m in between.I also have a few ultrasonic sensors, but they have only a 10 metter range and my enviroment is rather large (as an example, take a large warehouse with many pillars, boxes, walls .etc) .My main task is to identify obstacles and also find a roughly "best" route that the robot must take in order to navigate in a "rough" enviroment (the ground floor is not smooth at all). All the image processing is not made on the robot, but on a computer with NVIDIA GT425 2Gb Ram. My questions are : Should I mount the cameras on a rotative suport, so that they take pictures on a wider angle? It is posible creating a reasonable 3D reconstruction based on only 2 views at such a small distance in between? If so, to what degree I can use this for obstacle avoidance and a best route construction? If a roughly accurate 3D representation of the enviroment can be made, how can it be used as creating a map of the enviroment? (Consider the following example: the robot must sweep an fairly large area and it would be energy efficient if it would not go through the same place (or course) twice;however when a 3D reconstruction is made from one direction, how can it tell if it has already been there if it comes from the opposite direction ) I have found this response on a similar question , but I am still concerned with the accuracy of 3D reconstruction (for example a couple of boxes situated at 100m considering the small resolution and distance between the cameras). I am just starting gathering information for this project, so if you haved worked on something similar please give me some guidelines (and some links:D) on how should I approach this specific task. Thanks in advance, Tamash
If you want to do obstacle avoidance, it is probably easiest to use the ultrasonic sensors. If the robot is moving at speeds suitable for a human environment then their range of 10m gives you ample time to stop the robot. Keep in mind that no system will guarantee that you don't accidentally hit something. (2) It is posible creating a reasonable 3D reconstruction based on only 2 views at such a small distance in between? If so, to what degree I can use this for obstacle avoidance and a best route construction? Yes, this is possible. Have a look at ROS and their vSLAM. http://www.ros.org/wiki/vslam and http://www.ros.org/wiki/slam_gmapping would be two of many possible resources. however when a 3D reconstruction is made from one direction, how can it tell if it has already been there if it comes from the opposite direction Well, you are trying to find your position given a measurement and a map. That should be possible, and it wouldn't matter from which direction the map was created. However, there is the loop closure problem. Because you are creating a 3D map at the same time as you are trying to find your way around, you don't know whether you are at a new place or at a place you have seen before. CONCLUSION This is a difficult task! Actually, it's more than one. First you have simple obstacle avoidance (i.e. Don't drive into things.). Then you want to do simultaneous localisation and mapping (SLAM, read Wikipedia on that) and finally you want to do path planning (i.e. sweeping the floor without covering area twice). I hope that helps?
I'd say no if you mean each eye rotating independently. You won't get the accuracy you need to do the stereo correspondence and make calibration a nightmare. But if you want the whole "head" of the robot to pivot, then that may be doable. But you should have some good encoders on the joints. If you use ROS, there are some tools which help you turn the two stereo images into a 3d point cloud. http://www.ros.org/wiki/stereo_image_proc. There is a tradeoff between your baseline (the distance between the cameras) and your resolution at different ranges. large baseline = greater resolution at large distances, but it also has a large minimum distance. I don't think i would expect more than a few centimeters of accuracy from a static stereo rig. and this accuracy only gets worse when you compound there robot's location uncertainty. 2.5. for mapping and obstacle avoidance the first thing i would try to do is segment out the ground plane. the ground plane goes to mapping, and everything above is an obstacle. check out PCL for some point cloud operating functions: http://pointclouds.org/ if you can't simply put a planar laser on the robot like a SICK or Hokuyo, then i might try to convert the 3d point cloud into a pseudo-laser-scan then use some off the shelf SLAM instead of trying to do visual slam. i think you'll have better results. Other thoughts: now that the Microsoft Kinect has been released, it is usually easier (and cheaper) to simply use that to get a 3d point cloud instead of doing actual stereo. This project sounds a lot like the DARPA LAGR program. (learning applied to ground robots). That program is over, but you may be able to track down papers published from it.