Below is my code to access the text file using Pyspark from Jupyter notebook. I am running the Jupyter notebook in a Linux environment(Ubuntu).
from pyspark import SparkConf, SparkContext
import collections
conf = SparkConf().setMaster("local").setAppName("Ratings")
sc = SparkContext.getOrCreate(conf=conf)
lines = sc.textFile("/home/ajit/Desktop/u.data")
ratings = lines.map(lambda x : x.split()[2])
result = ratings.countByValue()
When I try to run the "result = ratings.countByValue()" I am facing below error saying "java.io.IOException: Cannot run program "python": error=2, No such file or directory"
Py4JJavaError Traceback (most recent call last)
<ipython-input-5-d0433aff12c2> in <module>
1 ratings = lines.map(lambda x : x.split()[2])
2 #ratings.collect()
----> 3 result = ratings.countByValue()
4 #ratings.
~/spark-3.0.0-preview2-bin-hadoop2.7/python/pyspark/rdd.py in countByValue(self)
1332 m1[k] += v
1333 return m1
-> 1334 return self.mapPartitions(countPartition).reduce(mergeMaps)
1335
1336 def top(self, num, key=None):
~/spark-3.0.0-preview2-bin-hadoop2.7/python/pyspark/rdd.py in reduce(self, f)
915 yield reduce(f, iterator, initial)
916
--> 917 vals = self.mapPartitions(func).collect()
918 if vals:
919 return reduce(f, vals)
~/spark-3.0.0-preview2-bin-hadoop2.7/python/pyspark/rdd.py in collect(self)
887 """
888 with SCCallSiteSync(self.context) as css:
--> 889 sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
890 return list(_load_from_socket(sock_info, self._jrdd_deserializer))
891
~/.local/lib/python3.8/site-packages/py4j/java_gateway.py in __call__(self, *args)
1302
1303 answer = self.gateway_client.send_command(command)
-> 1304 return_value = get_return_value(
1305 answer, self.gateway_client, self.target_id, self.name)
1306
~/.local/lib/python3.8/site-packages/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 1.0 failed 1 times, most recent failure: Lost task 0.0 in stage 1.0 (TID 1, 10.0.2.15, executor driver): java.io.IOException: Cannot run program "python": error=2, No such file or directory
at java.base/java.lang.ProcessBuilder.start(ProcessBuilder.java:1128)
at java.base/java.lang.ProcessBuilder.start(ProcessBuilder.java:1071)
at org.apache.spark.api.python.PythonWorkerFactory.startDaemon(PythonWorkerFactory.scala:209)
at org.apache.spark.api.python.PythonWorkerFactory.createThroughDaemon(PythonWorkerFactory.scala:132)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:105)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:118)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:126)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:127)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:441)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:444)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
at java.base/java.lang.Thread.run(Thread.java:834)
Caused by: java.io.IOException: error=2, No such file or directory
at java.base/java.lang.ProcessImpl.forkAndExec(Native Method)
at java.base/java.lang.ProcessImpl.<init>(ProcessImpl.java:340)
at java.base/java.lang.ProcessImpl.start(ProcessImpl.java:271)
at java.base/java.lang.ProcessBuilder.start(ProcessBuilder.java:1107)
... 17 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:1989)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:1977)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:1976)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1976)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:956)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:956)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:956)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2206)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2155)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2144)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:758)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2116)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2137)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2156)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2181)
at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1004)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:388)
at org.apache.spark.rdd.RDD.collect(RDD.scala:1003)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:168)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:566)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.base/java.lang.Thread.run(Thread.java:834)
Caused by: java.io.IOException: Cannot run program "python": error=2, No such file or directory
at java.base/java.lang.ProcessBuilder.start(ProcessBuilder.java:1128)
at java.base/java.lang.ProcessBuilder.start(ProcessBuilder.java:1071)
at org.apache.spark.api.python.PythonWorkerFactory.startDaemon(PythonWorkerFactory.scala:209)
at org.apache.spark.api.python.PythonWorkerFactory.createThroughDaemon(PythonWorkerFactory.scala:132)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:105)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:118)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:126)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:127)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:441)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:444)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
... 1 more
Caused by: java.io.IOException: error=2, No such file or directory
at java.base/java.lang.ProcessImpl.forkAndExec(Native Method)
at java.base/java.lang.ProcessImpl.<init>(ProcessImpl.java:340)
at java.base/java.lang.ProcessImpl.start(ProcessImpl.java:271)
at java.base/java.lang.ProcessBuilder.start(ProcessBuilder.java:1107)
... 17 more
Please help me with this as I am new to the PySpark.
try:
lines = sc.textFile("file:///home/ajit/Desktop/u.data")
i believe the error is due to improper syntax and the above statement should resolve it
What you need to do is put file in HDFS with below command then the path will work.
HDFS command to copy file to cluster. This should be run in jupyter terminal :
hdfs dfs -put /home/ajit/Desktop/u.data /user/ajit
After that the spark read command should work as below :
lines = sc.textFile("/user/ajit/u.data")
Related
I'm running Apache Spark on my local laptop.
Apache Spark 3.3.1 | 16 GB RAM | 8-core CPU.
I have a dataframe containing data on Twitter-users, the data is retrieved from a bunch of JSON-files on my local machine. The dataframe has approx. 550,000 rows and three columns, two datatypes are strings and one is of datatype long. I first cleaned & transformed the dataframe and now I need to use the data elsewhere, so I want to write it to a CSV first.
I tried to do this
df.write.options(header=True).mode('overwrite').csv('tweets.csv')
This is the error I keep getting:
Py4JJavaError Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_11952/106748238.py in <module>
----> 1 twitter_df.write.options(header=True).mode('overwrite').csv('test.csv')
C:\Spark\spark-3.3.1-bin-hadoop3\python\pyspark\sql\readwriter.py in csv(self, path, mode, compression, sep, quote, escape, header, nullValue, escapeQuotes, quoteAll, dateFormat, timestampFormat, ignoreLeadingWhiteSpace, ignoreTrailingWhiteSpace, charToEscapeQuoteEscaping, encoding, emptyValue, lineSep)
1238 lineSep=lineSep,
1239 )
-> 1240 self._jwrite.csv(path)
1241
1242 def orc(
C:\Spark\spark-3.3.1-bin-hadoop3\python\lib\py4j-0.10.9.5-src.zip\py4j\java_gateway.py in __call__(self, *args)
1319
1320 answer = self.gateway_client.send_command(command)
-> 1321 return_value = get_return_value(
1322 answer, self.gateway_client, self.target_id, self.name)
1323
C:\Spark\spark-3.3.1-bin-hadoop3\python\pyspark\sql\utils.py in deco(*a, **kw)
188 def deco(*a: Any, **kw: Any) -> Any:
189 try:
--> 190 return f(*a, **kw)
191 except Py4JJavaError as e:
192 converted = convert_exception(e.java_exception)
C:\Spark\spark-3.3.1-bin-hadoop3\python\lib\py4j-0.10.9.5-src.zip\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
Py4JJavaError: An error occurred while calling o455.csv.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.errors.QueryExecutionErrors$.jobAbortedError(QueryExecutionErrors.scala:651)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:278)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:186)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:113)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:111)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:125)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:98)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:109)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:169)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:95)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:98)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:94)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:584)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:176)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:584)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:560)
at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:94)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:81)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:79)
at org.apache.spark.sql.execution.QueryExecution.assertCommandExecuted(QueryExecution.scala:116)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:860)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:390)
at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:363)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:239)
at org.apache.spark.sql.DataFrameWriter.csv(DataFrameWriter.scala:851)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:64)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:564)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.base/java.lang.Thread.run(Thread.java:832)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 2 in stage 2.0 failed 1 times, most recent failure: Lost task 2.0 in stage 2.0 (TID 103) (LAPTOP-CJHDAJKQ.mshome.net executor driver): java.net.SocketException: An established connection was aborted by the software in your host machine
at java.base/sun.nio.ch.NioSocketImpl.implRead(NioSocketImpl.java:325)
at java.base/sun.nio.ch.NioSocketImpl.read(NioSocketImpl.java:350)
at java.base/sun.nio.ch.NioSocketImpl$1.read(NioSocketImpl.java:803)
at java.base/java.net.Socket$SocketInputStream.read(Socket.java:981)
at java.base/java.io.BufferedInputStream.fill(BufferedInputStream.java:244)
at java.base/java.io.BufferedInputStream.read(BufferedInputStream.java:263)
at java.base/java.io.DataInputStream.readInt(DataInputStream.java:391)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$2.read(PythonUDFRunner.scala:76)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$2.read(PythonUDFRunner.scala:68)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:512)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:491)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.ContextAwareIterator.hasNext(ContextAwareIterator.scala:39)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at scala.collection.Iterator$GroupedIterator.fill(Iterator.scala:1211)
at scala.collection.Iterator$GroupedIterator.hasNext(Iterator.scala:1217)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at scala.collection.Iterator.foreach(Iterator.scala:943)
at scala.collection.Iterator.foreach$(Iterator.scala:943)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:307)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.writeIteratorToStream(PythonUDFRunner.scala:53)
at org.apache.spark.api.python.BasePythonRunner$WriterThread.$anonfun$run$1(PythonRunner.scala:438)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:2066)
at org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:272)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2672)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2608)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2607)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2607)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1182)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1182)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1182)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2860)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2791)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:952)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2228)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:245)
... 42 more
Caused by: java.net.SocketException: An established connection was aborted by the software in your host machine
at java.base/sun.nio.ch.NioSocketImpl.implRead(NioSocketImpl.java:325)
at java.base/sun.nio.ch.NioSocketImpl.read(NioSocketImpl.java:350)
at java.base/sun.nio.ch.NioSocketImpl$1.read(NioSocketImpl.java:803)
at java.base/java.net.Socket$SocketInputStream.read(Socket.java:981)
at java.base/java.io.BufferedInputStream.fill(BufferedInputStream.java:244)
at java.base/java.io.BufferedInputStream.read(BufferedInputStream.java:263)
at java.base/java.io.DataInputStream.readInt(DataInputStream.java:391)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$2.read(PythonUDFRunner.scala:76)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$2.read(PythonUDFRunner.scala:68)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:512)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:491)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.ContextAwareIterator.hasNext(ContextAwareIterator.scala:39)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at scala.collection.Iterator$GroupedIterator.fill(Iterator.scala:1211)
at scala.collection.Iterator$GroupedIterator.hasNext(Iterator.scala:1217)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at scala.collection.Iterator.foreach(Iterator.scala:943)
at scala.collection.Iterator.foreach$(Iterator.scala:943)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:307)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.writeIteratorToStream(PythonUDFRunner.scala:53)
at org.apache.spark.api.python.BasePythonRunner$WriterThread.$anonfun$run$1(PythonRunner.scala:438)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:2066)
at org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:272)
Image of first three rows:
screenshot dataframe
Code to reproduce first three rows:
data=[("132857510","assistant coach","Retail, Sales and Food Jobs"),
("173972328","director security","Other Jobs"),
("3076169579","social worker","['Healthcare Jobs', 'Healthcare Jobs']")]
schema = StructType([\
StructField("user_id",StringType(),True),\
StructField("jobs",StringType(),True),\
StructField("sector",StringType(),True)\
])
df=spark.createDataFrame(data=data,schema=schema )
df.show()
So far I tried:
I tried setting a config [('spark.executor.heartbeatInterval','3600s'), ('spark.network.timeout','3601s')]. This did not change the error.
I tried bumping up the memory (different configurations) [('spark.executor.memory','8g'), ('spark.driver.memory','4g')]. Still got the error.
I tried converting the Pyspark dataframe to a Pandas dataframe (silly me)
I tried partitioning by the first two digits of a user's ID.
I tried Parquet instead of CSV
I tried everything I could find on SO so far.
I have been trying to register spark with GeoSpark. I have installed apache sedona 3.1.3 version in python 3.7. Spark session has created using
#Import required libraries
import os
import folium
import geopandas as gpd
from pyspark.sql import SparkSession
from geospark.register import GeoSparkRegistrator
from geospark.utils import GeoSparkKryoRegistrator, KryoSerializer
from geospark.register import upload_jars
#Generate spark session
upload_jars()
spark = SparkSession.builder.\
master("local[*]").\
appName("TestApp").\
config("spark.serializer", KryoSerializer.getName).\
config("spark.kryo.registrator", GeoSparkKryoRegistrator.getName) .\
getOrCreate()
spark session:
SparkSession -
in-memory
SparkContext
Spark UI
Version
v3.1.3
Master
local[*]
AppName
TestApp
When I tried to register this spark session with geospark using command:
GeoSparkRegistrator.registerAll(spark)
, I'm getting error py4javaerror like this:
{
Py4JJavaError Traceback (most recent call last)
Input In [4], in <module>
----> 1 GeoSparkRegistrator.registerAll(spark)
File ~/anaconda3/envs/ox/lib/python3.10/site-packages/geospark/register/geo_registrator.py:24, in GeoSparkRegistrator.registerAll(cls, spark)
15 #classmethod
16 def registerAll(cls, spark: SparkSession) -> bool:
17 """
18 This is the core of whole package, It uses py4j to run wrapper which takes existing SparkSession
19 and register all User Defined Functions by GeoSpark developers, for this SparkSession.
(...)
22 :return: bool, True if registration was correct.
23 """
---> 24 spark.sql("SELECT 1 as geom").count()
25 PackageImporter.import_jvm_lib(spark._jvm)
26 cls.register(spark)
File ~/anaconda3/envs/ox/lib/python3.10/site-packages/pyspark/sql/dataframe.py:680, in DataFrame.count(self)
670 def count(self):
671 """Returns the number of rows in this :class:`DataFrame`.
672
673 .. versionadded:: 1.3.0
(...)
678 2
679 """
--> 680 return int(self._jdf.count())
File ~/anaconda3/envs/ox/lib/python3.10/site-packages/py4j/java_gateway.py:1321, in JavaMember.__call__(self, *args)
1315 command = proto.CALL_COMMAND_NAME +\
1316 self.command_header +\
1317 args_command +\
1318 proto.END_COMMAND_PART
1320 answer = self.gateway_client.send_command(command)
-> 1321 return_value = get_return_value(
1322 answer, self.gateway_client, self.target_id, self.name)
1324 for temp_arg in temp_args:
1325 temp_arg._detach()
File ~/anaconda3/envs/ox/lib/python3.10/site-packages/pyspark/sql/utils.py:111, in capture_sql_exception.<locals>.deco(*a, **kw)
109 def deco(*a, **kw):
110 try:
--> 111 return f(*a, **kw)
112 except py4j.protocol.Py4JJavaError as e:
113 converted = convert_exception(e.java_exception)
File ~/anaconda3/envs/ox/lib/python3.10/site-packages/py4j/protocol.py:326, in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
331 "An error occurred while calling {0}{1}{2}. Trace:\n{3}\n".
332 format(target_id, ".", name, value))
Py4JJavaError: An error occurred while calling o42.count.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task serialization failed: org.apache.spark.SparkException: Failed to register classes with Kryo
org.apache.spark.SparkException: Failed to register classes with Kryo
at org.apache.spark.serializer.KryoSerializer.$anonfun$newKryo$5(KryoSerializer.scala:173)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.util.Utils$.withContextClassLoader(Utils.scala:222)
at org.apache.spark.serializer.KryoSerializer.newKryo(KryoSerializer.scala:161)
at org.apache.spark.serializer.KryoSerializer$$anon$1.create(KryoSerializer.scala:102)
at com.esotericsoftware.kryo.pool.KryoPoolQueueImpl.borrow(KryoPoolQueueImpl.java:48)
at org.apache.spark.serializer.KryoSerializer$PoolWrapper.borrow(KryoSerializer.scala:109)
at org.apache.spark.serializer.KryoSerializerInstance.borrowKryo(KryoSerializer.scala:336)
at org.apache.spark.serializer.KryoSerializationStream.<init>(KryoSerializer.scala:256)
at org.apache.spark.serializer.KryoSerializerInstance.serializeStream(KryoSerializer.scala:422)
at org.apache.spark.broadcast.TorrentBroadcast$.blockifyObject(TorrentBroadcast.scala:319)
at org.apache.spark.broadcast.TorrentBroadcast.writeBlocks(TorrentBroadcast.scala:140)
at org.apache.spark.broadcast.TorrentBroadcast.<init>(TorrentBroadcast.scala:95)
at org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:35)
at org.apache.spark.broadcast.BroadcastManager.newBroadcast(BroadcastManager.scala:77)
at org.apache.spark.SparkContext.broadcast(SparkContext.scala:1509)
at org.apache.spark.scheduler.DAGScheduler.submitMissingTasks(DAGScheduler.scala:1433)
at org.apache.spark.scheduler.DAGScheduler.submitStage(DAGScheduler.scala:1271)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$submitStage$5(DAGScheduler.scala:1274)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$submitStage$5$adapted(DAGScheduler.scala:1273)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.submitStage(DAGScheduler.scala:1273)
at org.apache.spark.scheduler.DAGScheduler.handleJobSubmitted(DAGScheduler.scala:1213)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2440)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2432)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2421)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
Caused by: java.lang.ClassNotFoundException: org.datasyslab.geospark.serde.GeoSparkKryoRegistrator
at java.net.URLClassLoader.findClass(URLClassLoader.java:387)
at java.lang.ClassLoader.loadClass(ClassLoader.java:418)
at java.lang.ClassLoader.loadClass(ClassLoader.java:351)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.spark.util.Utils$.classForName(Utils.scala:209)
at org.apache.spark.serializer.KryoSerializer.$anonfun$newKryo$7(KryoSerializer.scala:168)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at scala.collection.TraversableLike.map(TraversableLike.scala:238)
at scala.collection.TraversableLike.map$(TraversableLike.scala:231)
at scala.collection.AbstractTraversable.map(Traversable.scala:108)
at org.apache.spark.serializer.KryoSerializer.$anonfun$newKryo$5(KryoSerializer.scala:168)
... 26 more
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2303)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2252)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2251)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2251)
at org.apache.spark.scheduler.DAGScheduler.submitMissingTasks(DAGScheduler.scala:1443)
at org.apache.spark.scheduler.DAGScheduler.submitStage(DAGScheduler.scala:1271)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$submitStage$5(DAGScheduler.scala:1274)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$submitStage$5$adapted(DAGScheduler.scala:1273)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.submitStage(DAGScheduler.scala:1273)
at org.apache.spark.scheduler.DAGScheduler.handleJobSubmitted(DAGScheduler.scala:1213)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2440)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2432)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2421)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:902)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2196)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2217)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2236)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2261)
at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1030)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:414)
at org.apache.spark.rdd.RDD.collect(RDD.scala:1029)
at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:390)
at org.apache.spark.sql.Dataset.$anonfun$count$1(Dataset.scala:3019)
at org.apache.spark.sql.Dataset.$anonfun$count$1$adapted(Dataset.scala:3018)
at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3700)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3698)
at org.apache.spark.sql.Dataset.count(Dataset.scala:3018)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Failed to register classes with Kryo
at org.apache.spark.serializer.KryoSerializer.$anonfun$newKryo$5(KryoSerializer.scala:173)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.util.Utils$.withContextClassLoader(Utils.scala:222)
at org.apache.spark.serializer.KryoSerializer.newKryo(KryoSerializer.scala:161)
at org.apache.spark.serializer.KryoSerializer$$anon$1.create(KryoSerializer.scala:102)
at com.esotericsoftware.kryo.pool.KryoPoolQueueImpl.borrow(KryoPoolQueueImpl.java:48)
at org.apache.spark.serializer.KryoSerializer$PoolWrapper.borrow(KryoSerializer.scala:109)
at org.apache.spark.serializer.KryoSerializerInstance.borrowKryo(KryoSerializer.scala:336)
at org.apache.spark.serializer.KryoSerializationStream.<init>(KryoSerializer.scala:256)
at org.apache.spark.serializer.KryoSerializerInstance.serializeStream(KryoSerializer.scala:422)
at org.apache.spark.broadcast.TorrentBroadcast$.blockifyObject(TorrentBroadcast.scala:319)
at org.apache.spark.broadcast.TorrentBroadcast.writeBlocks(TorrentBroadcast.scala:140)
at org.apache.spark.broadcast.TorrentBroadcast.<init>(TorrentBroadcast.scala:95)
at org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:35)
at org.apache.spark.broadcast.BroadcastManager.newBroadcast(BroadcastManager.scala:77)
at org.apache.spark.SparkContext.broadcast(SparkContext.scala:1509)
at org.apache.spark.scheduler.DAGScheduler.submitMissingTasks(DAGScheduler.scala:1433)
at org.apache.spark.scheduler.DAGScheduler.submitStage(DAGScheduler.scala:1271)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$submitStage$5(DAGScheduler.scala:1274)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$submitStage$5$adapted(DAGScheduler.scala:1273)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.submitStage(DAGScheduler.scala:1273)
at org.apache.spark.scheduler.DAGScheduler.handleJobSubmitted(DAGScheduler.scala:1213)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2440)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2432)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2421)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
Caused by: java.lang.ClassNotFoundException: org.datasyslab.geospark.serde.GeoSparkKryoRegistrator
at java.net.URLClassLoader.findClass(URLClassLoader.java:387)
}
Please help. I need to run this for geospatial analysis. Thanks in advance.
I am running spark jobs using datafactory in azure databricks.
My cluster vesion is 9.1 LTS ML (includes Apache Spark 3.1.2, Scala 2.12).
I am writing data on azure blob storage.
While writing job gives me error.
It shows error on line
AllDataDF.coalesce(1).write.format("delta").mode("append").option("mergeSchema", "true").save(path)
And traceback in as below.
/databricks/spark/python/pyspark/sql/readwriter.py in save(self, path, format, mode, partitionBy, **options)
1134 self._jwrite.save()
1135 else:
-> 1136 self._jwrite.save(path)
1137
1138 #since(1.4)
/databricks/spark/python/lib/py4j-0.10.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
1302
1303 answer = self.gateway_client.send_command(command)
-> 1304 return_value = get_return_value(
1305 answer, self.gateway_client, self.target_id, self.name)
1306
/databricks/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
115 def deco(*a, **kw):
116 try:
--> 117 return f(*a, **kw)
118 except py4j.protocol.Py4JJavaError as e:
119 converted = convert_exception(e.java_exception)
/databricks/spark/python/lib/py4j-0.10.9-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
Py4JJavaError: An error occurred while calling o7344.save.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:307)
at com.databricks.sql.transaction.tahoe.files.TransactionalWriteEdge.$anonfun$writeFiles$5(TransactionalWriteEdge.scala:349)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$5(SQLExecution.scala:130)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:273)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$1(SQLExecution.scala:104)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:854)
at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:77)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:223)
at com.databricks.sql.transaction.tahoe.files.TransactionalWriteEdge.$anonfun$writeFiles$1(TransactionalWriteEdge.scala:296)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:80)
at com.databricks.sql.transaction.tahoe.metering.DeltaLogging.$anonfun$recordDeltaOperation$5(DeltaLogging.scala:122)
at com.databricks.logging.UsageLogging.$anonfun$recordOperation$1(UsageLogging.scala:395)
at com.databricks.logging.UsageLogging.executeThunkAndCaptureResultTags$1(UsageLogging.scala:484)
at com.databricks.logging.UsageLogging.$anonfun$recordOperationWithResultTags$4(UsageLogging.scala:504)
at com.databricks.logging.UsageLogging.$anonfun$withAttributionContext$1(UsageLogging.scala:266)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62)
at com.databricks.logging.UsageLogging.withAttributionContext(UsageLogging.scala:261)
at com.databricks.logging.UsageLogging.withAttributionContext$(UsageLogging.scala:258)
at com.databricks.spark.util.PublicDBLogging.withAttributionContext(DatabricksSparkUsageLogger.scala:20)
at com.databricks.logging.UsageLogging.withAttributionTags(UsageLogging.scala:305)
at com.databricks.logging.UsageLogging.withAttributionTags$(UsageLogging.scala:297)
at com.databricks.spark.util.PublicDBLogging.withAttributionTags(DatabricksSparkUsageLogger.scala:20)
at com.databricks.logging.UsageLogging.recordOperationWithResultTags(UsageLogging.scala:479)
at com.databricks.logging.UsageLogging.recordOperationWithResultTags$(UsageLogging.scala:404)
at com.databricks.spark.util.PublicDBLogging.recordOperationWithResultTags(DatabricksSparkUsageLogger.scala:20)
at com.databricks.logging.UsageLogging.recordOperation(UsageLogging.scala:395)
at com.databricks.logging.UsageLogging.recordOperation$(UsageLogging.scala:367)
at com.databricks.spark.util.PublicDBLogging.recordOperation(DatabricksSparkUsageLogger.scala:20)
at com.databricks.spark.util.PublicDBLogging.recordOperation0(DatabricksSparkUsageLogger.scala:57)
at com.databricks.spark.util.DatabricksSparkUsageLogger.recordOperation(DatabricksSparkUsageLogger.scala:137)
at com.databricks.spark.util.UsageLogger.recordOperation(UsageLogger.scala:71)
at com.databricks.spark.util.UsageLogger.recordOperation$(UsageLogger.scala:58)
at com.databricks.spark.util.DatabricksSparkUsageLogger.recordOperation(DatabricksSparkUsageLogger.scala:98)
at com.databricks.spark.util.UsageLogging.recordOperation(UsageLogger.scala:429)
at com.databricks.spark.util.UsageLogging.recordOperation$(UsageLogger.scala:408)
at com.databricks.sql.transaction.tahoe.OptimisticTransaction.recordOperation(OptimisticTransaction.scala:98)
at com.databricks.sql.transaction.tahoe.metering.DeltaLogging.recordDeltaOperation(DeltaLogging.scala:120)
at com.databricks.sql.transaction.tahoe.metering.DeltaLogging.recordDeltaOperation$(DeltaLogging.scala:104)
at com.databricks.sql.transaction.tahoe.OptimisticTransaction.recordDeltaOperation(OptimisticTransaction.scala:98)
at com.databricks.sql.transaction.tahoe.files.TransactionalWriteEdge.writeFiles(TransactionalWriteEdge.scala:213)
at com.databricks.sql.transaction.tahoe.files.TransactionalWriteEdge.writeFiles$(TransactionalWriteEdge.scala:207)
at com.databricks.sql.transaction.tahoe.OptimisticTransaction.writeFiles(OptimisticTransaction.scala:98)
at com.databricks.sql.transaction.tahoe.files.TransactionalWriteEdge.writeFiles(TransactionalWriteEdge.scala:389)
at com.databricks.sql.transaction.tahoe.files.TransactionalWriteEdge.writeFiles$(TransactionalWriteEdge.scala:382)
at com.databricks.sql.transaction.tahoe.OptimisticTransaction.writeFiles(OptimisticTransaction.scala:98)
at com.databricks.sql.transaction.tahoe.files.TransactionalWrite.writeFiles(TransactionalWrite.scala:158)
at com.databricks.sql.transaction.tahoe.files.TransactionalWrite.writeFiles$(TransactionalWrite.scala:155)
at com.databricks.sql.transaction.tahoe.OptimisticTransaction.writeFiles(OptimisticTransaction.scala:98)
at com.databricks.sql.transaction.tahoe.commands.WriteIntoDelta.write(WriteIntoDelta.scala:175)
at com.databricks.sql.transaction.tahoe.commands.WriteIntoDelta.$anonfun$run$2(WriteIntoDelta.scala:91)
at com.databricks.sql.transaction.tahoe.commands.WriteIntoDelta.$anonfun$run$2$adapted(WriteIntoDelta.scala:83)
at com.databricks.sql.transaction.tahoe.DeltaLog.withNewTransaction(DeltaLog.scala:206)
at com.databricks.sql.transaction.tahoe.commands.WriteIntoDelta.$anonfun$run$1(WriteIntoDelta.scala:83)
at com.databricks.sql.acl.CheckPermissions$.trusted(CheckPermissions.scala:1413)
at com.databricks.sql.transaction.tahoe.commands.WriteIntoDelta.run(WriteIntoDelta.scala:82)
at com.databricks.sql.transaction.tahoe.sources.DeltaDataSource.createRelation(DeltaDataSource.scala:164)
at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:48)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:75)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:73)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:96)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:213)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:257)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:253)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:209)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:167)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:166)
at org.apache.spark.sql.DataFrameWriter.$anonfun$runCommand$1(DataFrameWriter.scala:1080)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$5(SQLExecution.scala:130)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:273)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$1(SQLExecution.scala:104)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:854)
at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:77)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:223)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:1080)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:469)
at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:386)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:304)
at sun.reflect.GeneratedMethodAccessor531.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380)
at py4j.Gateway.invoke(Gateway.java:295)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:251)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 8352.0 failed 4 times, most recent failure: Lost task 0.3 in stage 8352.0 (TID 10576) (10.139.64.18 executor 17): org.apache.spark.SparkException: Task failed while writing rows.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.executeTask(FileFormatWriter.scala:396)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$write$15(FileFormatWriter.scala:284)
at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$3(ResultTask.scala:75)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$1(ResultTask.scala:75)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:55)
at org.apache.spark.scheduler.Task.doRunTask(Task.scala:150)
at org.apache.spark.scheduler.Task.$anonfun$run$1(Task.scala:119)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.Task.run(Task.scala:91)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$13(Executor.scala:813)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1620)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:816)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:672)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.util.NoSuchElementException
at org.apache.spark.sql.vectorized.ColumnarBatch$1.next(ColumnarBatch.java:69)
at org.apache.spark.sql.vectorized.ColumnarBatch$1.next(ColumnarBatch.java:58)
at scala.collection.convert.Wrappers$JIteratorWrapper.next(Wrappers.scala:44)
at org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$4.next(ArrowConverters.scala:401)
at org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$4.next(ArrowConverters.scala:382)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage138.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:757)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage183.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:757)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:488)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$executeTask$2(FileFormatWriter.scala:374)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1654)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.executeTask(FileFormatWriter.scala:383)
... 19 more
Suppressed: java.io.IOException: can not write PageHeader(type:DICTIONARY_PAGE, uncompressed_page_size:176, compressed_page_size:101, crc:-1384879305, dictionary_page_header:DictionaryPageHeader(num_values:22, encoding:PLAIN_DICTIONARY))
at org.apache.parquet.format.Util.write(Util.java:224)
at org.apache.parquet.format.Util.writePageHeader(Util.java:61)
at org.apache.parquet.format.converter.ParquetMetadataConverter.writeDictionaryPageHeader(ParquetMetadataConverter.java:1190)
at org.apache.parquet.hadoop.ParquetFileWriter.writeDictionaryPage(ParquetFileWriter.java:374)
at org.apache.parquet.hadoop.ColumnChunkPageWriteStore$ColumnChunkPageWriter.writeToFileWriter(ColumnChunkPageWriteStore.java:238)
at org.apache.parquet.hadoop.ColumnChunkPageWriteStore.flushToFileWriter(ColumnChunkPageWriteStore.java:316)
at org.apache.parquet.hadoop.InternalParquetRecordWriter.flushRowGroupToStore(InternalParquetRecordWriter.java:202)
at org.apache.parquet.hadoop.InternalParquetRecordWriter.close(InternalParquetRecordWriter.java:127)
at org.apache.parquet.hadoop.ParquetRecordWriter.close(ParquetRecordWriter.java:165)
at org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.close(ParquetOutputWriter.scala:41)
at org.apache.spark.sql.execution.datasources.FileFormatDataWriter.releaseResources(FileFormatDataWriter.scala:58)
at org.apache.spark.sql.execution.datasources.FileFormatDataWriter.abort(FileFormatDataWriter.scala:84)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$executeTask$3(FileFormatWriter.scala:380)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1665)
... 20 more
Caused by: shaded.parquet.org.apache.thrift.transport.TTransportException: java.io.IOException: Stream is closed!
at shaded.parquet.org.apache.thrift.transport.TIOStreamTransport.write(TIOStreamTransport.java:147)
at shaded.parquet.org.apache.thrift.transport.TTransport.write(TTransport.java:107)
at shaded.parquet.org.apache.thrift.protocol.TCompactProtocol.writeByteDirect(TCompactProtocol.java:482)
at shaded.parquet.org.apache.thrift.protocol.TCompactProtocol.writeByteDirect(TCompactProtocol.java:489)
at shaded.parquet.org.apache.thrift.protocol.TCompactProtocol.writeFieldBeginInternal(TCompactProtocol.java:252)
at shaded.parquet.org.apache.thrift.protocol.TCompactProtocol.writeFieldBegin(TCompactProtocol.java:234)
at org.apache.parquet.format.InterningProtocol.writeFieldBegin(InterningProtocol.java:74)
at org.apache.parquet.format.PageHeader$PageHeaderStandardScheme.write(PageHeader.java:1068)
at org.apache.parquet.format.PageHeader$PageHeaderStandardScheme.write(PageHeader.java:966)
at org.apache.parquet.format.PageHeader.write(PageHeader.java:847)
at org.apache.parquet.format.Util.write(Util.java:222)
... 33 more
Caused by: java.io.IOException: Stream is closed!
at shaded.databricks.azurebfs.org.apache.hadoop.fs.azurebfs.services.AbfsOutputStream.close(AbfsOutputStream.java:344)
at shaded.databricks.azurebfs.org.apache.hadoop.fs.azurebfs.services.PageCRCVerifyingAbfsOutputStream.close(PageCRCVerifyingAbfsOutputStream.java:48)
at org.apache.hadoop.fs.FSDataOutputStream$PositionCache.close(FSDataOutputStream.java:72)
at org.apache.hadoop.fs.FSDataOutputStream.close(FSDataOutputStream.java:106)
at com.databricks.backend.daemon.data.common.CancellableOutputStream.cancel(CancellableOutputStream.scala:24)
at com.databricks.backend.daemon.data.client.DatabricksFileSystemV2.$anonfun$create$4(DatabricksFileSystemV2.scala:630)
at org.apache.spark.SparkUtils$.$anonfun$onTaskFailure$2(SparkUtils.scala:58)
at org.apache.spark.SparkUtils$.$anonfun$onTaskFailure$2$adapted(SparkUtils.scala:57)
at org.apache.spark.TaskContext$$anon$2.onTaskFailure(TaskContext.scala:177)
at org.apache.spark.TaskContextImpl.$anonfun$invokeTaskFailureListeners$1(TaskContextImpl.scala:150)
at org.apache.spark.TaskContextImpl.$anonfun$invokeTaskFailureListeners$1$adapted(TaskContextImpl.scala:150)
at org.apache.spark.TaskContextImpl.invokeListeners(TaskContextImpl.scala:197)
at org.apache.spark.TaskContextImpl.invokeTaskFailureListeners(TaskContextImpl.scala:150)
at org.apache.spark.TaskContextImpl.markTaskFailed(TaskContextImpl.scala:127)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1663)
... 20 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2828)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2775)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2769)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2769)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1305)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1305)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1305)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:3036)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2977)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2965)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:1067)
at org.apache.spark.SparkContext.runJobInternal(SparkContext.scala:2477)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2460)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:274)
... 88 more
Caused by: org.apache.spark.SparkException: Task failed while writing rows.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.executeTask(FileFormatWriter.scala:396)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$write$15(FileFormatWriter.scala:284)
at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$3(ResultTask.scala:75)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$1(ResultTask.scala:75)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:55)
at org.apache.spark.scheduler.Task.doRunTask(Task.scala:150)
at org.apache.spark.scheduler.Task.$anonfun$run$1(Task.scala:119)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.Task.run(Task.scala:91)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$13(Executor.scala:813)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1620)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:816)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:672)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Caused by: java.util.NoSuchElementException
at org.apache.spark.sql.vectorized.ColumnarBatch$1.next(ColumnarBatch.java:69)
at org.apache.spark.sql.vectorized.ColumnarBatch$1.next(ColumnarBatch.java:58)
at scala.collection.convert.Wrappers$JIteratorWrapper.next(Wrappers.scala:44)
at org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$4.next(ArrowConverters.scala:401)
at org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$4.next(ArrowConverters.scala:382)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage138.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:757)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage183.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:757)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:488)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$executeTask$2(FileFormatWriter.scala:374)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1654)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.executeTask(FileFormatWriter.scala:383)
... 19 more
Suppressed: java.io.IOException: can not write PageHeader(type:DICTIONARY_PAGE, uncompressed_page_size:176, compressed_page_size:101, crc:-1384879305, dictionary_page_header:DictionaryPageHeader(num_values:22, encoding:PLAIN_DICTIONARY))
at org.apache.parquet.format.Util.write(Util.java:224)
at org.apache.parquet.format.Util.writePageHeader(Util.java:61)
at org.apache.parquet.format.converter.ParquetMetadataConverter.writeDictionaryPageHeader(ParquetMetadataConverter.java:1190)
at org.apache.parquet.hadoop.ParquetFileWriter.writeDictionaryPage(ParquetFileWriter.java:374)
at org.apache.parquet.hadoop.ColumnChunkPageWriteStore$ColumnChunkPageWriter.writeToFileWriter(ColumnChunkPageWriteStore.java:238)
at org.apache.parquet.hadoop.ColumnChunkPageWriteStore.flushToFileWriter(ColumnChunkPageWriteStore.java:316)
at org.apache.parquet.hadoop.InternalParquetRecordWriter.flushRowGroupToStore(InternalParquetRecordWriter.java:202)
at org.apache.parquet.hadoop.InternalParquetRecordWriter.close(InternalParquetRecordWriter.java:127)
at org.apache.parquet.hadoop.ParquetRecordWriter.close(ParquetRecordWriter.java:165)
at org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.close(ParquetOutputWriter.scala:41)
at org.apache.spark.sql.execution.datasources.FileFormatDataWriter.releaseResources(FileFormatDataWriter.scala:58)
at org.apache.spark.sql.execution.datasources.FileFormatDataWriter.abort(FileFormatDataWriter.scala:84)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$executeTask$3(FileFormatWriter.scala:380)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1665)
... 20 more
Caused by: shaded.parquet.org.apache.thrift.transport.TTransportException: java.io.IOException: Stream is closed!
at shaded.parquet.org.apache.thrift.transport.TIOStreamTransport.write(TIOStreamTransport.java:147)
at shaded.parquet.org.apache.thrift.transport.TTransport.write(TTransport.java:107)
at shaded.parquet.org.apache.thrift.protocol.TCompactProtocol.writeByteDirect(TCompactProtocol.java:482)
at shaded.parquet.org.apache.thrift.protocol.TCompactProtocol.writeByteDirect(TCompactProtocol.java:489)
at shaded.parquet.org.apache.thrift.protocol.TCompactProtocol.writeFieldBeginInternal(TCompactProtocol.java:252)
at shaded.parquet.org.apache.thrift.protocol.TCompactProtocol.writeFieldBegin(TCompactProtocol.java:234)
at org.apache.parquet.format.InterningProtocol.writeFieldBegin(InterningProtocol.java:74)
at org.apache.parquet.format.PageHeader$PageHeaderStandardScheme.write(PageHeader.java:1068)
at org.apache.parquet.format.PageHeader$PageHeaderStandardScheme.write(PageHeader.java:966)
at org.apache.parquet.format.PageHeader.write(PageHeader.java:847)
at org.apache.parquet.format.Util.write(Util.java:222)
... 33 more
Caused by: java.io.IOException: Stream is closed!
at shaded.databricks.azurebfs.org.apache.hadoop.fs.azurebfs.services.AbfsOutputStream.close(AbfsOutputStream.java:344)
at shaded.databricks.azurebfs.org.apache.hadoop.fs.azurebfs.services.PageCRCVerifyingAbfsOutputStream.close(PageCRCVerifyingAbfsOutputStream.java:48)
at org.apache.hadoop.fs.FSDataOutputStream$PositionCache.close(FSDataOutputStream.java:72)
at org.apache.hadoop.fs.FSDataOutputStream.close(FSDataOutputStream.java:106)
at com.databricks.backend.daemon.data.common.CancellableOutputStream.cancel(CancellableOutputStream.scala:24)
at com.databricks.backend.daemon.data.client.DatabricksFileSystemV2.$anonfun$create$4(DatabricksFileSystemV2.scala:630)
at org.apache.spark.SparkUtils$.$anonfun$onTaskFailure$2(SparkUtils.scala:58)
at org.apache.spark.SparkUtils$.$anonfun$onTaskFailure$2$adapted(SparkUtils.scala:57)
at org.apache.spark.TaskContext$$anon$2.onTaskFailure(TaskContext.scala:177)
at org.apache.spark.TaskContextImpl.$anonfun$invokeTaskFailureListeners$1(TaskContextImpl.scala:150)
at org.apache.spark.TaskContextImpl.$anonfun$invokeTaskFailureListeners$1$adapted(TaskContextImpl.scala:150)
at org.apache.spark.TaskContextImpl.invokeListeners(TaskContextImpl.scala:197)
at org.apache.spark.TaskContextImpl.invokeTaskFailureListeners(TaskContextImpl.scala:150)
at org.apache.spark.TaskContextImpl.markTaskFailed(TaskContextImpl.scala:127)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1663)
... 20 more
Job runs every month so it should not be a code error.
I have some data (~1 MB) on customers of a service provider. I'm trying to predict using Spark (PySpark on Databricks) if they will end their subscription (churn) based on a few features.
One-Feature Model
To start, I tried with only one feature and saw a successful training:
# Create vector assembler to merge independent features (in this case just one) into one feature as a list
vectorAssembler = VectorAssembler(inputCols=['MonthlyCharges'], outputCol='Charges')
# Create a logistic regressor instance to take in this list ('Charges') and use churn labels
lr = LogisticRegression(featuresCol='Charges', labelCol='Churn_indexed')
# Select the two relevant columns an put in a new dataframe
# NOTE: Is this actually hurting performance by using extra memory?
# I wasn't sure if it would expedite the vector assembler transformation
relevant = df_num.select(['MonthlyCharges', 'Churn_indexed'])
# Transform the data using the Assembler and then dump the unwanted column ('Monthly Charges)
# NOTE: Is this selection also not necessary because 'lr' already knows which feature column to use?
curr = vectorAssembler2.transform(relevant).select(['Charges', 'Churn_indexed'])
# Create train/test split
train2, test2 = curr.randomSplit([0.8, 0.2], seed=42)
# Fit the model
model = lr.fit(train2)
Two-Feature Model
However, when I try to use two independent features, I am getting an error
vectorAssembler2 = VectorAssembler(inputCols=['MonthlyCharges', 'TotalCharges'], outputCol='Charges')
lr2 = LogisticRegression(featuresCol='Charges', labelCol='Churn_indexed')
relevant = df_num.select(['MonthlyCharges', 'TotalCharges', 'Churn_indexed'])
curr = vectorAssembler2.transform(relevant).select(['Charges', 'Churn_indexed'])
train2, test2 = curr.randomSplit([0.8, 0.2], seed=42)
model = lr2.fit(train2)
Error
Here is the error:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 30.0 failed 1 times, most recent failure: Lost task 0.0 in stage 30.0 (TID 29) (ip-10-172-254-69.us-west-2.compute.internal executor driver): org.apache.spark.SparkException: Failed to execute user defined function(VectorAssembler$$Lambda$5900/1716232969: (struct<MonthlyCharges:double,TotalCharges:double>) => struct<type:tinyint,size:int,indices:array<int>,values:array<double>>)
And expanding it shows this error:
Py4JJavaError Traceback (most recent call last)
<command-1815097094215178> in <module>
11 curr.show()
12
---> 13 model = lr.fit(train2)
/databricks/python_shell/dbruntime/MLWorkloadsInstrumentation/_pyspark.py in patched_method(self, *args, **kwargs)
28 call_succeeded = False
29 try:
---> 30 result = original_method(self, *args, **kwargs)
31 call_succeeded = True
32 return result
/databricks/spark/python/pyspark/ml/base.py in fit(self, dataset, params)
159 return self.copy(params)._fit(dataset)
160 else:
--> 161 return self._fit(dataset)
162 else:
163 raise ValueError("Params must be either a param map or a list/tuple of param maps, "
/databricks/spark/python/pyspark/ml/wrapper.py in _fit(self, dataset)
333
334 def _fit(self, dataset):
--> 335 java_model = self._fit_java(dataset)
336 model = self._create_model(java_model)
337 return self._copyValues(model)
/databricks/spark/python/pyspark/ml/wrapper.py in _fit_java(self, dataset)
330 """
331 self._transfer_params_to_java()
--> 332 return self._java_obj.fit(dataset._jdf)
333
334 def _fit(self, dataset):
/databricks/spark/python/lib/py4j-0.10.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
1302
1303 answer = self.gateway_client.send_command(command)
-> 1304 return_value = get_return_value(
1305 answer, self.gateway_client, self.target_id, self.name)
1306
/databricks/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
115 def deco(*a, **kw):
116 try:
--> 117 return f(*a, **kw)
118 except py4j.protocol.Py4JJavaError as e:
119 converted = convert_exception(e.java_exception)
/databricks/spark/python/lib/py4j-0.10.9-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
Py4JJavaError: An error occurred while calling o1465.fit.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 30.0 failed 1 times, most recent failure: Lost task 0.0 in stage 30.0 (TID 29) (ip-10-172-254-69.us-west-2.compute.internal executor driver): org.apache.spark.SparkException: Failed to execute user defined function(VectorAssembler$$Lambda$5900/1716232969: (struct<MonthlyCharges:double,TotalCharges:double>) => struct<type:tinyint,size:int,indices:array<int>,values:array<double>>)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.sort_addToSorter_0$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:757)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at scala.collection.Iterator.foreach(Iterator.scala:941)
at scala.collection.Iterator.foreach$(Iterator.scala:941)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1429)
at scala.collection.TraversableOnce.foldLeft(TraversableOnce.scala:162)
at scala.collection.TraversableOnce.foldLeft$(TraversableOnce.scala:160)
at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1429)
at scala.collection.TraversableOnce.aggregate(TraversableOnce.scala:219)
at scala.collection.TraversableOnce.aggregate$(TraversableOnce.scala:219)
at scala.collection.AbstractIterator.aggregate(Iterator.scala:1429)
at org.apache.spark.rdd.RDD.$anonfun$treeAggregate$3(RDD.scala:1240)
at org.apache.spark.rdd.RDD.$anonfun$treeAggregate$5(RDD.scala:1241)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitions$2(RDD.scala:868)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitions$2$adapted(RDD.scala:868)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:380)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:344)
at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$3(ResultTask.scala:75)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$1(ResultTask.scala:75)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:55)
at org.apache.spark.scheduler.Task.doRunTask(Task.scala:150)
at org.apache.spark.scheduler.Task.$anonfun$run$1(Task.scala:119)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.Task.run(Task.scala:91)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$13(Executor.scala:788)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1643)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:791)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:647)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Encountered null while assembling a row with handleInvalid = "error". Consider
removing nulls from dataset or using handleInvalid = "keep" or "skip".
at org.apache.spark.ml.feature.VectorAssembler$.$anonfun$assemble$1(VectorAssembler.scala:292)
at org.apache.spark.ml.feature.VectorAssembler$.$anonfun$assemble$1$adapted(VectorAssembler.scala:261)
at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:36)
at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:38)
at org.apache.spark.ml.feature.VectorAssembler$.assemble(VectorAssembler.scala:261)
at org.apache.spark.ml.feature.VectorAssembler.$anonfun$transform$6(VectorAssembler.scala:144)
... 41 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2765)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2712)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2706)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2706)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1255)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1255)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1255)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2973)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2914)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2902)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:1028)
at org.apache.spark.SparkContext.runJobInternal(SparkContext.scala:2446)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2429)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2541)
at org.apache.spark.rdd.RDD.$anonfun$fold$1(RDD.scala:1193)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:125)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:419)
at org.apache.spark.rdd.RDD.fold(RDD.scala:1187)
at org.apache.spark.rdd.RDD.$anonfun$treeAggregate$1(RDD.scala:1256)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:125)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:419)
at org.apache.spark.rdd.RDD.treeAggregate(RDD.scala:1232)
at org.apache.spark.ml.stat.Summarizer$.getClassificationSummarizers(Summarizer.scala:232)
at org.apache.spark.ml.classification.LogisticRegression.$anonfun$train$1(LogisticRegression.scala:513)
at org.apache.spark.ml.util.Instrumentation$.$anonfun$instrumented$1(Instrumentation.scala:284)
at scala.util.Try$.apply(Try.scala:213)
at org.apache.spark.ml.util.Instrumentation$.instrumented(Instrumentation.scala:284)
at org.apache.spark.ml.classification.LogisticRegression.train(LogisticRegression.scala:497)
at org.apache.spark.ml.classification.LogisticRegression.train(LogisticRegression.scala:288)
at org.apache.spark.ml.Predictor.fit(Predictor.scala:151)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380)
at py4j.Gateway.invoke(Gateway.java:295)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:251)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Failed to execute user defined function(VectorAssembler$$Lambda$5900/1716232969: (struct<MonthlyCharges:double,TotalCharges:double>) => struct<type:tinyint,size:int,indices:array<int>,values:array<double>>)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.sort_addToSorter_0$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:757)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at scala.collection.Iterator.foreach(Iterator.scala:941)
at scala.collection.Iterator.foreach$(Iterator.scala:941)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1429)
at scala.collection.TraversableOnce.foldLeft(TraversableOnce.scala:162)
at scala.collection.TraversableOnce.foldLeft$(TraversableOnce.scala:160)
at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1429)
at scala.collection.TraversableOnce.aggregate(TraversableOnce.scala:219)
at scala.collection.TraversableOnce.aggregate$(TraversableOnce.scala:219)
at scala.collection.AbstractIterator.aggregate(Iterator.scala:1429)
at org.apache.spark.rdd.RDD.$anonfun$treeAggregate$3(RDD.scala:1240)
at org.apache.spark.rdd.RDD.$anonfun$treeAggregate$5(RDD.scala:1241)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitions$2(RDD.scala:868)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitions$2$adapted(RDD.scala:868)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:380)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:344)
at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$3(ResultTask.scala:75)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$1(ResultTask.scala:75)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:55)
at org.apache.spark.scheduler.Task.doRunTask(Task.scala:150)
at org.apache.spark.scheduler.Task.$anonfun$run$1(Task.scala:119)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.scheduler.Task.run(Task.scala:91)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$13(Executor.scala:788)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1643)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:791)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:647)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Caused by: org.apache.spark.SparkException: Encountered null while assembling a row with handleInvalid = "error". Consider
removing nulls from dataset or using handleInvalid = "keep" or "skip".
at org.apache.spark.ml.feature.VectorAssembler$.$anonfun$assemble$1(VectorAssembler.scala:292)
at org.apache.spark.ml.feature.VectorAssembler$.$anonfun$assemble$1$adapted(VectorAssembler.scala:261)
at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:36)
at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:38)
at org.apache.spark.ml.feature.VectorAssembler$.assemble(VectorAssembler.scala:261)
at org.apache.spark.ml.feature.VectorAssembler.$anonfun$transform$6(VectorAssembler.scala:144)
... 41 more
Does anyone know what is causing this behavior? Any help is much appreciated, thanks!
Extra info:
15 GB, 2-Core Cluster
DBR 8.3
Spark 3.1.1
Scala 2.12
EDITS:
The data is customer churn data for a phone company. See here:
https://www.kaggle.com/blastchar/telco-customer-churn
To test what the issue was, I used only one feature (monthly charges). Here is a screenshot of the data (charges having been vectorized)
I then added total charges as well, which gave me an error just like when I used all features. Here is what the data looked like using monthly and total charges:
Added the complete error!
The reason of the error is because your data contains null values
Caused by: org.apache.spark.SparkException: Encountered null while assembling a row with handleInvalid = "error". Consider
removing nulls from dataset or using handleInvalid = "keep" or "skip".
This is the count of null values of the data you shared from Kaggle
df = spark.read.option("header", True).csv('WA_Fn-UseC_-Telco-Customer-Churn.csv')
print({col:df.filter(df[col].cast('float').isNull()).count() for col in ['MonthlyCharges', 'TotalCharges']})
# {'MonthlyCharges': 0, 'TotalCharges': 11}
means that when your model only used MonthlyCharges, it worked fine because there was no null values. But when you included TotalCharges and some of the null values were in the training set, it threw the above error.
Try filling null values with zeros using .fillna(0)
relevant = df_num.select(['MonthlyCharges', 'TotalCharges', 'Churn_indexed']).fillna(0)
I am learning to code with PySpark and Jupyter-notebook with Python.
In the first example I got an error that I didn't understand.
I have installed Java in the folder C:\ProgramFiles\Java\jdk1.8.0_201. Since I read that Java may produce problem if its installation folder name has spaces, I installed over in the folder mentioned above. The version of Java is 8.
I installed Spark according to: https://mas-dse.github.io/DSE230/installation/windows/#install and configured the different variables https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-tips-and-tricks-running-spark-windows.html
import findspark
findspark.init()
from pyspark import SparkContext
sc = SparkContext(master="local[4]")
A=sc.parallelize(range(3))
L=A.collect()
When the collect() command runs, I get the following errors
Py4JJavaError Traceback (most recent call last)
<ipython-input-5-6b63599b99af> in <module>()
----> 1 L=A.collect()
2 #print(type(L))
3 #print(L)
C:\opt\spark\python\pyspark\rdd.py in collect(self)
814 """
815 with SCCallSiteSync(self.context) as css:
--> 816 sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
817 return list(_load_from_socket(sock_info, self._jrdd_deserializer))
818
C:\opt\spark\python\lib\py4j-0.10.7-src.zip\py4j\java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
C:\opt\spark\python\lib\py4j-0.10.7-src.zip\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 3 in stage 0.0 failed 1 times, most recent failure: Lost task 3.0 in stage 0.0 (TID 3, localhost, executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:135)
at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:409)
at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:199)
at java.net.ServerSocket.implAccept(ServerSocket.java:545)
at java.net.ServerSocket.accept(ServerSocket.java:513)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1887)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1875)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1874)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1874)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2108)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2057)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2046)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2126)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:945)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.collect(RDD.scala:944)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:166)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:135)
at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:409)
at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:199)
at java.net.ServerSocket.implAccept(ServerSocket.java:545)
at java.net.ServerSocket.accept(ServerSocket.java:513)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
After several days looking for a solution to my problem, I found a recommendation in internet to install the previous version of Spark (2.3 instead of 2.4).
I tested it in my computer with windows 10 64bit system, and this worked for me to solve the problem above mentioned.
If you want more details, look at Python worker failed to connect back
Regards,
Diego