Obtaining type information with Template Haskell - haskell

I'm currently working on a library that allows the user to specify a list of command specifications as follows:
data CommandDef = forall (as :: [*]). Typeable as => CommandDef {
argTypes :: Proxy as,
commandName :: String,
commandStrings :: [String],
parsers :: HList (FMap CommandParser as),
description :: Maybe String
}
This list of command specifications can then be passed into a template haskell function genCommands :: [CommandDef] -> Q [Dec] to generate a Command data type representing the different types of commands that the user has specified, together with a function parseCommands :: String -> Maybe Command, where argTypes specifies the types of the command's arguments to be parsed, and parsers is an HList of the relevant parsers for the given argTypes.
The issue is, I need to somehow get a Type (from Language.Haskell.TH) for each of the argTypes in a CommandDef in order to properly generate the Command type with Template Haskell -- while still keeping the type safety of making sure all of the parsers are of the appropriate type. (The idea is, if commandName = "CommandName and argTypes = Proxy #'[ArgType1, ArgType2], a constructor of form CommandName ArgType1 ArgType2 will be generated in the Command type.)
So, really, in an ideal world, what I would like is a function Proxy as -> Q [Type], or something similar, but I'm not sure if this is possible to do in Template Haskell.
Is there such a thing? Or is there any way my approach could be modified in order to accomplish all of the same goals with Template Haskell?
I have considered adding a redundant field argTypesTH :: [Name] which contains all of the names of the types in argTypes, but I'm not even sure how this could work, because I can't seem to find a template haskell function which takes a type name, and returns the needed Type that needs to be specified for the constructors of my Command type. (There is reifyType, but I'm not sure if that can do what I want, as that takes the name of a value and returns a type)

Related

What does a stand for in a data type declaration?

Normally when using type declarations we do:
function_name :: Type -> Type
However in an exercise I am trying to solve there is the following structure:
function_name :: Type a -> Type a
or explicitly as in the exercise
alphabet :: DFA a -> Alphabet a
alphabet = undefined
What does a stand for?
Short answer: it's a type variable.
At the computation level, the way we define functions is to use variables to refer to their arguments. Like this:
f x = x + 3
Here x is a variable, and its value will be chosen when the function is called. Haskell has a similar (but not identical...) mechanism in its type sublanguage. For example, you can write things like:
type F x = (x, Int, x)
type Endo a = a -> a -> a
Here again x is a variable in the first one (and a in the second), and its value will be chosen at use sites. One can also use this mechanism when defining new types. (The previous two examples just give new names to existing types, but the following does more.) One of the most basic nontrivial examples of this is the Maybe family of types:
data Maybe a = Nothing | Just a
The things on the right of the = are computation-level, so you can mostly ignore them for now, but on the left we are declaring a new family of types Maybe which accepts other types as an argument. For example, Maybe Int, Maybe (Bool, String), Maybe (Endo Char), and even passing in expressions that have variables like Maybe (x, Int, x) are all possible.
Syntactically, type constructors (things which are defined as part of the program text and that we expect the compiler to look up the definition for) start with an upper case letter and type variables (things which will be instantiated later and so don't currently have a concrete definition) start with lower case letters.
So, in the type signature you showed:
alphabet :: DFA a -> Alphabet a
I suspect there are actually two constructs new to you, not just one: first, the type variable a that you asked about, and second, the concept of type application, where we apply at the type level one "function-like" type to another. (Outside of this answer, people say "parameterized" instead of "function-like".)
...and, believe it or not, there is even a type system for types that makes sure you don't write things like these:
Int a -- Int is not parameterized, so shouldn't be applied to arguments
Int Char -- ditto
Maybe -> String -- Maybe is parameterized, so should be applied to
-- arguments, but isn't

Multiple words in function type declaration confuses me

I understand haskell's function type declaration like,
length :: String -> Int
prefix :: Int -> String -> String
But sometimes, the types on the right side are not simple types like String, Integer but it contains multiple literal words, and the words that look like custom defined etc.
For example, these types defined on this post,
withLocation :: Q Exp -> Q Exp
What does Q, Exp mean?
formatLoc :: Loc -> String
What does Loc mean? Is it part of haskell library?
The types Q, Exp and Loc are types from the Template Haskell module imported at the beginning of the source file.
Q is a parameterized type, just like, say, Maybe or IO from the prelude, which is here applied to Exp.
How to do goto defintion from emacs editor?
This can be achieved using Scion, but that won't help you for this use case as it does not allow you to jump into external libraries (which may not be available in source form anyway).

Tagging a string with corresponding symbol

I would like an easy way to create a String tagged with itself. Right now I can
do something like:
data TagString :: Symbol -> * where
Tag :: String -> TagString s
deriving Show
tag :: KnownSymbol s => Proxy s -> TagString s
tag s = Tag (symbolVal s)
and use it like
tag (Proxy :: Proxy "blah")
But this is not nice because
The guarantee about the tag is only provided by tag not by the GADT.
Every time I want to create a value I have to provide a type signature, which
gets unwieldy if the value is part of some bigger expression.
Is there any way to improve this, preferably going in the opposite direction, i.e. from String to Symbol? I would like to write Tag "blah" and have ghc infer the type
TagString "blah".
GHC.TypeLits provides the someSymbolVal function which looks somewhat
related but it produces a SomeSymbol, not a Symbol and I can quite grasp how to use
it.
Is there any way to improve this, preferably going in the opposite direction, i.e. from String to Symbol?
There is no way to go directly from String to Symbol, because Haskell isn't dependently typed, unfortunately. You do have to write out a type annotation every time you want a new value and there isn't an existing tag with the desired symbol already around.
The guarantee about the tag is only provided by tag not by the GADT.
The following should work well (in fact, the same type can be found in the singletons package):
data SSym :: Symbol -> * where
SSym :: KnownSymbol s => SSym s
-- defining values
sym1 = SSym :: SSym "foo"
sym2 = SSym :: SSym "bar"
This type essentially differs from Proxy only by having the KnownSymbol dictionary in the constructor. The dictionary lets us recover the string contained within even if the symbol is not known statically:
extractString :: SSym s -> String
extractString s#SSym = symbolVal s
We pattern matched on SSym, thereby bringing into scope the implicit KnownSymbol dictionary. The same doesn't work with a mere Proxy:
extractString' :: forall (s :: Symbol). Proxy s -> String
extractString' p#Proxy = symbolVal p
-- type error, we can't recover the string from anywhere
... it produces a SomeSymbol, not a Symbol and I can quite grasp how to use it.
SomeSymbol is like SSym except it hides the string it carries around so that it doesn't appear in the type. The string can be recovered by pattern matching on the constructor.
extractString'' :: SomeSymbol -> String
extractString'' (SomeSymbol proxy) = symbolVal proxy
It can be useful when you want to manipulate different symbols in bulk, for example you can put them in a list (which you can't do with different SSym-s, because their types differ).

Why can't I use record selectors with an existentially quantified type?

When using Existential types, we have to use a pattern-matching syntax for extracting the foralled value. We can't use the ordinary record selectors as functions. GHC reports an error and suggest using pattern-matching with this definition of yALL:
{-# LANGUAGE ExistentialQuantification #-}
data ALL = forall a. Show a => ALL { theA :: a }
-- data ok
xALL :: ALL -> String
xALL (ALL a) = show a
-- pattern matching ok
-- ABOVE: heaven
-- BELOW: hell
yALL :: ALL -> String
yALL all = show $ theA all
-- record selector failed
forall.hs:11:19:
Cannot use record selector `theA' as a function due to escaped type variables
Probable fix: use pattern-matching syntax instead
In the second argument of `($)', namely `theA all'
In the expression: show $ theA all
In an equation for `yALL': yALL all = show $ theA all
Some of my data take more than 5 elements. It's hard to maintain the code if I
use pattern-matching:
func1 (BigData _ _ _ _ elemx _ _) = func2 elemx
Is there a good method to make code like that maintainable or to wrap it up so that I can use some kind of selectors?
Existential types work in a more elaborate manner than regular types. GHC is (rightly) forbidding you from using theA as a function. But imagine there was no such prohibition. What type would that function have? It would have to be something like this:
-- Not a real type signature!
theA :: ALL -> t -- for a fresh type t on each use of theA; t is an instance of Show
To put it very crudely, forall makes GHC "forget" the type of the constructor's arguments; all that the type system knows is that this type is an instance of Show. So when you try to extract the value of the constructor's argument, there is no way to recover the original type.
What GHC does, behind the scenes, is what the comment to the fake type signature above says—each time you pattern match against the ALL constructor, the variable bound to the constructor's value is assigned a unique type that's guaranteed to be different from every other type. Take for example this code:
case ALL "foo" of
ALL x -> show x
The variable x gets a unique type that is distinct from every other type in the program and cannot be matched with any type variable. These unique types are not allowed to escape to the top level—which is the reason why theA cannot be used as a function.
You can use record syntax in pattern matching,
func1 BigData{ someField = elemx } = func2 elemx
works and is much less typing for huge types.

How to define a class that allows uniform access to different records in Haskell?

I have two records that both have a field I want to extract for display. How do I arrange things so they can be manipulated with the same functions? Since they have different fields (in this case firstName and buildingName) that are their name fields, they each need some "adapter" code to map firstName to name. Here is what I have so far:
class Nameable a where
name :: a -> String
data Human = Human {
firstName :: String
}
data Building = Building {
buildingName :: String
}
instance Nameable Human where
name x = firstName x
instance Nameable Building where
-- I think the x is redundant here, i.e the following should work:
-- name = buildingName
name x = buildingName x
main :: IO ()
main = do
putStr $ show (map name items)
where
items :: (Nameable a) => [a]
items = [ Human{firstName = "Don"}
-- Ideally I want the next line in the array too, but that gives an
-- obvious type error at the moment.
--, Building{buildingName = "Empire State"}
]
This does not compile:
TypeTest.hs:23:14:
Couldn't match expected type `a' against inferred type `Human'
`a' is a rigid type variable bound by
the type signature for `items' at TypeTest.hs:22:23
In the expression: Human {firstName = "Don"}
In the expression: [Human {firstName = "Don"}]
In the definition of `items': items = [Human {firstName = "Don"}]
I would have expected the instance Nameable Human section would make this work. Can someone explain what I am doing wrong, and for bonus points what "concept" I am trying to get working, since I'm having trouble knowing what to search for.
This question feels similar, but I couldn't figure out the connection with my problem.
Consider the type of items:
items :: (Nameable a) => [a]
It's saying that for any Nameable type, items will give me a list of that type. It does not say that items is a list that may contain different Nameable types, as you might think. You want something like items :: [exists a. Nameable a => a], except that you'll need to introduce a wrapper type and use forall instead. (See: Existential type)
{-# LANGUAGE ExistentialQuantification #-}
data SomeNameable = forall a. Nameable a => SomeNameable a
[...]
items :: [SomeNameable]
items = [ SomeNameable $ Human {firstName = "Don"},
SomeNameable $ Building {buildingName = "Empire State"} ]
The quantifier in the data constructor of SomeNameable basically allows it to forget everything about exactly which a is used, except that it is Nameable. Therefore, you will only be allowed to use functions from the Nameable class on the elements.
To make this nicer to use, you can make an instance for the wrapper:
instance Nameable (SomeNameable a) where
name (SomeNameable x) = name x
Now you can use it like this:
Main> map name items
["Don", "Empire State"]
Everybody is reaching for either existential quantification or algebraic data types. But these are both overkill (well depending on your needs, ADTs might not be).
The first thing to note is that Haskell has no downcasting. That is, if you use the following existential:
data SomeNameable = forall a. Nameable a => SomeNameable a
then when you create an object
foo :: SomeNameable
foo = SomeNameable $ Human { firstName = "John" }
the information about which concrete type the object was made with (here Human) is forever lost. The only things we know are: it is some type a, and there is a Nameable a instance.
What is it possible to do with such a pair? Well, you can get the name of the a you have, and... that's it. That's all there is to it. In fact, there is an isomorphism. I will make a new data type so you can see how this isomorphism arises in cases when all your concrete objects have more structure than the class.
data ProtoNameable = ProtoNameable {
-- one field for each typeclass method
protoName :: String
}
instance Nameable ProtoNameable where
name = protoName
toProto :: SomeNameable -> ProtoNameable
toProto (SomeNameable x) = ProtoNameable { protoName = name x }
fromProto :: ProtoNameable -> SomeNameable
fromProto = SomeNameable
As we can see, this fancy existential type SomeNameable has the same structure and information as ProtoNameable, which is isomorphic to String, so when you are using this lofty concept SomeNameable, you're really just saying String in a convoluted way. So why not just say String?
Your items definition has exactly the same information as this definition:
items = [ "Don", "Empire State" ]
I should add a few notes about this "protoization": it is only as straightforward as this when the typeclass you are existentially quantifying over has a certain structure: namely when it looks like an OO class.
class Foo a where
method1 :: ... -> a -> ...
method2 :: ... -> a -> ...
...
That is, each method only uses a once as an argument. If you have something like Num
class Num a where
(+) :: a -> a -> a
...
which uses a in multiple argument positions, or as a result, then eliminating the existential is not as easy, but still possible. However my recommendation to do this changes from a frustration to a subtle context-dependent choice, because of the complexity and distant relationship of the two representations. However, every time I have seen existentials used in practice it is with the Foo kind of tyepclass, where it only adds needless complexity, so I quite emphatically consider it an antipattern. In most of these cases I recommend eliminating the entire class from your codebase and exclusively using the protoized type (after you give it a good name).
Also, if you do need to downcast, then existentials aren't your man. You can either use an algebraic data type, as others people have answered, or you can use Data.Dynamic (which is basically an existential over Typeable. But don't do that; a Haskell programmer resorting to Dynamic is ungentlemanlike. An ADT is the way to go, where you characterize all the possible types it could be in one place (which is necessary so that the functions that do the "downcasting" know that they handle all possible cases).
I like #hammar's answer, and you should also check out this article which provides another example.
But, you might want to think differently about your types. The boxing of Nameable into the SomeNameable data type usually makes me start thinking about whether a union type for the specific case is meaningful.
data Entity = H Human | B Building
instance Nameable Entity where ...
items = [H (Human "Don"), B (Building "Town Hall")]
I'm not sure why you want to use the same function for
getting the name of a Human and the name of a Building.
If their names are used in fundamentally different ways,
except maybe for simple things like printing them,
then you probably want two
different functions for that. The type system
will automatically guide you to choose the right function
to use in each situation.
But if having a name is something significant about the
whole purpose of your program, and a Human and a Building
are really pretty much the same thing in that respect as far as your program
is concerned, then you would define their type together:
data NameableThing =
Human { name :: String } |
Building { name :: String }
That gives you a polymorphic function name that works for
whatever particular flavor of NameableThing you happen to have,
without needing to get into type classes.
Usually you would use a type class for a different kind of situation:
if you have some kind of non-trivial operation that has the same purpose
but a different implementation for several different types.
Even then, it's often better to use some other approach instead, like
passing a function as a parameter (a "higher order function", or "HOF").
Haskell type classes are a beautiful and powerful tool, but they are totally
different than what is called a "class" in object-oriented languages,
and they are used far less often.
And I certainly don't recommend complicating your program by using an advanced
extension to Haskell like Existential Qualification just to fit into
an object-oriented design pattern.
You can try to use Existentially Quanitified types and do it like this:
data T = forall a. Nameable a => MkT a
items = [MkT (Human "bla"), MkT (Building "bla")]
I've just had a look at the code that this question is abstracting from. For this, I would recommend merging the Task and RecurringTaskDefinition types:
data Task
= Once
{ name :: String
, scheduled :: Maybe Day
, category :: TaskCategory
}
| Recurring
{ name :: String
, nextOccurrence :: Day
, frequency :: RecurFrequency
}
type ProgramData = [Task] -- don't even need a new data type for this any more
Then, the name function works just fine on either type, and the functions you were complaining about like deleteTask and deleteRecurring don't even need to exist -- you can just use the standard delete function as usual.

Resources