Tracing sorting algorithms - python-3.x

I am trying to trace the changes in selection sort algorithm with python, Here's a piece of my code and what I've tried, the problem I am facing is printing the results in a table-like format
l = [2,5,1,7,9,5,3,0,-1]
iterat = 1
print('Iteration' + '\t\t\t' + 'Results')
for i in range(1, len(l)):
val_to_sort = l[i]
while l[i-1] > val_to_sort and i > 0:
l[i-1], l[i] = l[i], l[i-1]
i -= 1
print(iterat, '\t\t\t', l[0:iterat + 1],'|',l[iterat:])
iten += 1
from the code above, I am obtaining the following results:
But I am trying to obtain such results

Unident print one level to the left, so it is inside the for block instead of the while block.
Use join and map to print the lists as a string
You can use enumerate instead of manually incrementing iterat
def format_list(l):
return ' '.join(map(str, l))
l = [2,5,1,7,9,5,3,0,-1]
print('Iteration' + '\t\t\t' + 'Results')
for iterat, i in enumerate(range(1, len(l)), 1):
val_to_sort = l[i]
while l[i-1] > val_to_sort and i > 0:
l[i-1], l[i] = l[i], l[i-1]
i -= 1
print(iterat, '\t\t\t', format_list(l[0:iterat + 1]),'|', format_list(l[iterat:]))
Outputs
Iteration Results
1 2 5 | 5 1 7 9 5 3 0 -1
2 1 2 5 | 5 7 9 5 3 0 -1
3 1 2 5 7 | 7 9 5 3 0 -1
4 1 2 5 7 9 | 9 5 3 0 -1
5 1 2 5 5 7 9 | 9 3 0 -1
6 1 2 3 5 5 7 9 | 9 0 -1
7 0 1 2 3 5 5 7 9 | 9 -1
8 -1 0 1 2 3 5 5 7 9 | 9
I can't help you with the Cyrillic text though ;)

Related

Cumulative count using grouping, sorting, and condition

i want Cumulative count of zero only in column c grouped by column a and sorted by b if other number the count reset to 1
this a sample
df = pd.DataFrame({'a':[1,1,1,1,2,2,2,2],
'b':[1,2,3,4,1,2,3,4],
'c':[10,0,0,5,1,0,1,0]}
)
i try next code that work but if zero appear more than one time shift function didn't depend on new value and need to run more than one time depend on count of zero series
df.loc[df.c == 0 ,'n'] = df.n.shift(1)+1
i try next code it done with small data frame but when try with large data take a long time and didn't finsh
for ind in df.index:
if df.loc[ind,'c'] == 0 :
df.loc[ind,'new'] = df.loc[ind-1,'new']+1
else :
df.loc[ind,'new'] = 1
pd.DataFrame({'a':[1,1,1,1,2,2,2,2],
'b':[1,2,3,4,1,2,3,4],
'c':[10,0,0,5,1,0,1,0]}
The desired result
a b c n
0 1 1 10 1
1 1 2 0 2
2 1 3 0 3
3 1 4 5 1
4 2 1 1 1
5 2 2 0 2
6 2 3 1 1
7 2 4 0 2
Try use cumsum to create a group variable and then use groupby.cumcount to create the new column:
df.sort_values(['a', 'b'], inplace=True)
df['n'] = df['c'].groupby([df.a, df['c'].ne(0).cumsum()]).cumcount() + 1
df
a b c n
0 1 1 10 1
1 1 2 0 2
2 1 3 0 3
3 1 4 5 1
4 2 1 1 1
5 2 2 0 2
6 2 3 1 1
7 2 4 0 2

what is the good way to add 1 in column values if value greater than 2 python

I want to add 1 in column values if column value is greater than 2
here is my dataframe
df=pd.DataFrame({'A':[1,1,1,1,1,1,3,2,2,2,2,2,2],'flag':[1,1,0,1,1,1,5,1,1,0,1,1,1]})
df_out
df=pd.DataFrame({'A':[1,1,1,1,1,1,3,2,2,2,2,2,2],'flag':[1,1,0,1,1,1,6,1,1,0,1,1,1]})
Use DataFrame.loc with add 1:
df.loc[df.A.gt(2), 'flag'] += 1
print (df)
A flag
0 1 1
1 1 1
2 1 0
3 1 1
4 1 1
5 1 1
6 3 6
7 2 1
8 2 1
9 2 0
10 2 1
11 2 1
12 2 1
Or:
df['flag'] = np.where(df.A.gt(2), df['flag'] + 1, df['flag'])
EDIT:
mean = df.groupby(pd.cut(df['x'], bins))['y'].transform('mean')
df['flag'] = np.where(mean.gt(2), df['y'] + 1, df['y'])
And then:
x= df.groupby(pd.cut(df['x'], bins))['y'].apply(lambda x:abs(x-np.mean(x)))

How to take mean of 3 values before flag change 0 to 1python

I have dataframe with columns A,B and flag. I want to calculate mean of 2 values before flag change from 0 to 1 , and record value when flag change from 0 to 1 and record value when flag changes from 1 to 0.
# Input dataframe
df=pd.DataFrame({'A':[1,3,4,7,8,11,1,15,20,15,16,87],
'B':[1,3,4,6,8,11,1,19,20,15,16,87],
'flag':[0,0,0,0,1,1,1,0,0,0,0,0]})
# Expected output
df_out=df=pd.DataFrame({'A_mean_before_flag_change':[5.5],
'B_mean_before_flag_change':[5],
'A_value_before_change_flag':[7],
'B_value_before_change_flag':[6]})
I try to create more general solution:
df=pd.DataFrame({'A':[1,3,4,7,8,11,1,15,20,15,16,87],
'B':[1,3,4,6,8,11,1,19,20,15,16,87],
'flag':[0,0,0,0,1,1,1,0,0,1,0,1]})
print (df)
A B flag
0 1 1 0
1 3 3 0
2 4 4 0
3 7 6 0
4 8 8 1
5 11 11 1
6 1 1 1
7 15 19 0
8 20 20 0
9 15 15 1
10 16 16 0
11 87 87 1
First create groups by mask for 0 with next 1 values of flag:
m1 = df['flag'].eq(0) & df['flag'].shift(-1).eq(1)
df['g'] = m1.iloc[::-1].cumsum()
print (df)
A B flag g
0 1 1 0 3
1 3 3 0 3
2 4 4 0 3
3 7 6 0 3
4 8 8 1 2
5 11 11 1 2
6 1 1 1 2
7 15 19 0 2
8 20 20 0 2
9 15 15 1 1
10 16 16 0 1
11 87 87 1 0
then filter out groups with size less like N:
N = 4
df1 = df[df['g'].map(df['g'].value_counts()).ge(N)].copy()
print (df1)
A B flag g
0 1 1 0 3
1 3 3 0 3
2 4 4 0 3
3 7 6 0 3
4 8 8 1 2
5 11 11 1 2
6 1 1 1 2
7 15 19 0 2
8 20 20 0 2
Filter last N rows:
df2 = df1.groupby('g').tail(N)
And aggregate last with mean:
d = {'mean':'_mean_before_flag_change', 'last': '_value_before_change_flag'}
df3 = df2.groupby('g')['A','B'].agg(['mean','last']).sort_index(axis=1, level=1).rename(columns=d)
df3.columns = df3.columns.map(''.join)
print (df3)
A_value_before_change_flag B_value_before_change_flag \
g
2 20 20
3 7 6
A_mean_before_flag_change B_mean_before_flag_change
g
2 11.75 12.75
3 3.75 3.50
I'm assuming that this needs to work for cases with more than one rising edge and that the consecutive values and averages get appended to the output lists:
# the first step is to extract the rising and falling edges using diff(), identify sections and length
df['flag_diff'] = df.flag.diff().fillna(0)
df['flag_sections'] = (df.flag_diff != 0).cumsum()
df['flag_sum'] = df.flag.groupby(df.flag_sections).transform('sum')
# then you can get the relevant indices by checking for the rising edges
rising_edges = df.index[df.flag_diff==1.0]
val_indices = [i-1 for i in rising_edges]
avg_indices = [(i-2,i-1) for i in rising_edges]
# and finally iterate over the relevant sections
df_out = pd.DataFrame()
df_out['A_mean_before_flag_change'] = [df.A.loc[tpl[0]:tpl[1]].mean() for tpl in avg_indices]
df_out['B_mean_before_flag_change'] = [df.B.loc[tpl[0]:tpl[1]].mean() for tpl in avg_indices]
df_out['A_value_before_change_flag'] = [df.A.loc[idx] for idx in val_indices]
df_out['B_value_before_change_flag'] = [df.B.loc[idx] for idx in val_indices]
df_out['length'] = [df.flag_sum.loc[idx] for idx in rising_edges]
df_out.index = rising_edges

Slicing a pandas dataframe

import pandas as pd
x = pd.DataFrame([[1,2,3],[4,5,6]])
x[::2]
what does the above command mean and how does it function?
Better is more data, it return even rows only by slicing:
x = pd.DataFrame([[1,2,3],[4,5,6],[7,8,9],[0,1,2]])
print (x)
0 1 2
0 1 2 3
1 4 5 6
2 7 8 9
3 0 1 2
print (x[::2])
0 1 2
0 1 2 3
2 7 8 9

Octave position of maximum value in column

I want to find the argmax of the values in a matrix by column, e.g.:
1 2 3 2 3 3
4 5 6 ->
3 7 8
I feel like I should just be able to map an argmax/posmax function over the columns, but I don't see a particularly intuitive way to do this in Octave.
Read max function documentation here
[max_values indices] = max(input);
Example:
input =
1 2 3
4 5 6
3 7 8
[max_values indices] = max(input)
max_values =
4 7 8
indices =
2 3 3
In Octave If
A =
1 3 2
6 5 4
7 9 8
1) For Each Column Max value and corresponding index of them can be found by
>> [max_values,indices] =max(A,[],1)
max_values =
7 9 8
indices =
3 3 3
2) For Each Row Max value and corresponding index of them can be found by
>> [max_values,indices] =max(A,[],2)
max_values =
3
6
9
indices =
2
1
2
Similarly For minimum value
>> [min_values,indices] =min(A,[],1)
min_values =
1 3 2
indices =
1 1 1
>> [min_values,indices] =min(A,[],2)
min_values =
1
4
7
indices =
1
3
1

Resources