How to get lastest inserted record _id in mongoose - node.js

I am trying to get recently inserted record _id and p_id but i do not know how to get the value.Below given my code.This is not working.How to do it?
DB records:
{
_id:5eba58f0e5def333ad4d8c8d,
p_id:"C1",
product_name:"Name",
product_weight:123
},
{
_id:5eba58f0e5def333ad4d8c8e,
p_id:"C2",
product_name:"Name",
product_weight:123
},
{
_id:5eba58f0e5def333ad4d8c8f,
p_id:"C3",
product_name:"Name",
product_weight:123
}
data.controller.js:
var Product = mongoose.model(collectionName);
let latest_id = Product.findOne().sort({ field: 'asc', _id: -1 }).limit(1);
console.log("_id" + val); //output should be 3
let latest_p_id = Product.findOne().sort({ field: 'asc', p_id: -1 }).limit(1);
console.log("p_id" + val); //output should be C3

MongoDB does not natively support incremental auto generated numbers, so your first case, it's not possible if you don't manage your counter separately. You can count the number of documents, but it won't account for deleted documents.
For the second case, you almost got it:
with async/await
const product = await Product.findOne().sort({ p_id: -1 }).limit(1)
console.log(product.p_id) // this will be your desired output
without async/await
Product.findOne().sort({ p_id: -1 }).limit(1).then((product) => {
console.log(product.p_id) // this will be your desired output
})

Related

How to update multiple fields (maxLength, maxBreadth or maxArea) of a document based on multiple conditions sent from req.body?

I want to store maximum length, breadth, area ever encountered from a request and store it in the database. In this case, anything can be maximum and based on that I want to update max values in the database for that particular field only.
const body = {
oID: 123, // Primary key
length: 50,
breadth: 50
};
const { length, breadth } = body;
const currentArea = length * breadth;
await totalArea.updateOne(
{ oID: 123 },
{
$set: { $maxLength: maxLength < length ? length : $maxLength }, // I want to update the docs based on mongo query only since this won't work.
$set: { $maxBreadth: maxBreadth < breadth ? breadth : $maxBreadth }, // I want to update the docs based on mongo query only since this won't work.
$set: { $maxArea: maxArea < currentArea ? currentArea : $maxArea } // I want to update the docs based on mongo query only since this won't work.
},
{ upsert: true }
);
In the above example, I have demonstrated the logic using ternary operator and I want to perform the same operation using mongoDB query. i.e update a particular field while comparing it to existing fields from the database and update it if it satisfies the condition.
await totalArea.updateOne(
{ oID: 123
},
{
$max: {
maxLength: length,
maxBreadth: breadth,
maxArea : currentArea
}
},
{ upsert: true }
);
I found this to be working correctly. Thanks to #Mehari Mamo's comment.
If I understand correctly, you want something like this:
db.collection.update({
oID: 123
},
[{$set: {maxLength: {$max: [length, "$maxLength"]},
maxBreadth: {$max: [breadth, "$maxBreadth"]},
maxArea : {$max: [currentArea, "$maxArea "]}
}
}
],
{
upsert: true
})
You can check it here .
The [] on the second step allows you to access the current values of the document fields, as this is an aggregation pipeline.

Mongoose bulk update

I want to be able to update an array of objects where each object has a new unique value assigned to it.
Here is a simplified example of what I'm doing. items is an array of my collection items.
let items = [{_id: '903040349304', number: 55}, {_id: '12341244', number: 1166}, {_id: '667554', number: 51115}]
I want to assign a new number to each item, and then update it in collection:
items = items.map(item => {
item.number = randomInt(0, 1000000);
return item;
})
What would be the best way to update the collection at once? I know that I could do it in forEach instead of map, how ever this seems as a dirty way of doing it, as it won't do the bulk update.
items.forEach(async (item) => {
await this.itemModel.update({_id: item._id}, {number: randomInt(0, 1000000)})
});
I've checked the updateMany as well but my understanding of it is that it's only used to update the documents with a same new value - not like in my case, that every document has a new unique value assigned to it.
After a bit of thinking, I came up with this solution using bulkWrite.
const updateQueries = [];
items.forEach(async (item) => {
updateQueries.push({
updateOne: {
filter: { _id: item._id },
update: { number: item.number },
},
});
});
await this.itemModel.bulkWrite(updateQueries);
About bulkWrite
Sends multiple insertOne, updateOne, updateMany, replaceOne,
deleteOne, and/or deleteMany operations to the MongoDB server in one
command. This is faster than sending multiple independent operations
(like) if you use create()) because with bulkWrite() there is only one
round trip to MongoDB.
You can call an aggregate() to instantly update them without needing to pull them first:
Step1: get a random number with mongoDb build in $rand option which returns a number between 0 and 1
Step2: $multiply this number by 1000000 since that is what you defined ;)
Step3: use another $set with $floor to remove the decimal portion
YourModel.aggregate([
{
'$set': {
'value': {
'$multiply': [
{
'$rand': {}
}, 1000000
]
}
}
}, {
'$set': {
'value': {
'$floor': '$value'
}
}
}
])
Here a picture of how that looks in mongo Compass as a proof of it working:

How to order by twice with MongoDB, Mongoose, and NodeJS [duplicate]

I am looking to get a random record from a huge collection (100 million records).
What is the fastest and most efficient way to do so?
The data is already there and there are no field in which I can generate a random number and obtain a random row.
Starting with the 3.2 release of MongoDB, you can get N random docs from a collection using the $sample aggregation pipeline operator:
// Get one random document from the mycoll collection.
db.mycoll.aggregate([{ $sample: { size: 1 } }])
If you want to select the random document(s) from a filtered subset of the collection, prepend a $match stage to the pipeline:
// Get one random document matching {a: 10} from the mycoll collection.
db.mycoll.aggregate([
{ $match: { a: 10 } },
{ $sample: { size: 1 } }
])
As noted in the comments, when size is greater than 1, there may be duplicates in the returned document sample.
Do a count of all records, generate a random number between 0 and the count, and then do:
db.yourCollection.find().limit(-1).skip(yourRandomNumber).next()
Update for MongoDB 3.2
3.2 introduced $sample to the aggregation pipeline.
There's also a good blog post on putting it into practice.
For older versions (previous answer)
This was actually a feature request: http://jira.mongodb.org/browse/SERVER-533 but it was filed under "Won't fix."
The cookbook has a very good recipe to select a random document out of a collection: http://cookbook.mongodb.org/patterns/random-attribute/
To paraphrase the recipe, you assign random numbers to your documents:
db.docs.save( { key : 1, ..., random : Math.random() } )
Then select a random document:
rand = Math.random()
result = db.docs.findOne( { key : 2, random : { $gte : rand } } )
if ( result == null ) {
result = db.docs.findOne( { key : 2, random : { $lte : rand } } )
}
Querying with both $gte and $lte is necessary to find the document with a random number nearest rand.
And of course you'll want to index on the random field:
db.docs.ensureIndex( { key : 1, random :1 } )
If you're already querying against an index, simply drop it, append random: 1 to it, and add it again.
You can also use MongoDB's geospatial indexing feature to select the documents 'nearest' to a random number.
First, enable geospatial indexing on a collection:
db.docs.ensureIndex( { random_point: '2d' } )
To create a bunch of documents with random points on the X-axis:
for ( i = 0; i < 10; ++i ) {
db.docs.insert( { key: i, random_point: [Math.random(), 0] } );
}
Then you can get a random document from the collection like this:
db.docs.findOne( { random_point : { $near : [Math.random(), 0] } } )
Or you can retrieve several document nearest to a random point:
db.docs.find( { random_point : { $near : [Math.random(), 0] } } ).limit( 4 )
This requires only one query and no null checks, plus the code is clean, simple and flexible. You could even use the Y-axis of the geopoint to add a second randomness dimension to your query.
The following recipe is a little slower than the mongo cookbook solution (add a random key on every document), but returns more evenly distributed random documents. It's a little less-evenly distributed than the skip( random ) solution, but much faster and more fail-safe in case documents are removed.
function draw(collection, query) {
// query: mongodb query object (optional)
var query = query || { };
query['random'] = { $lte: Math.random() };
var cur = collection.find(query).sort({ rand: -1 });
if (! cur.hasNext()) {
delete query.random;
cur = collection.find(query).sort({ rand: -1 });
}
var doc = cur.next();
doc.random = Math.random();
collection.update({ _id: doc._id }, doc);
return doc;
}
It also requires you to add a random "random" field to your documents so don't forget to add this when you create them : you may need to initialize your collection as shown by Geoffrey
function addRandom(collection) {
collection.find().forEach(function (obj) {
obj.random = Math.random();
collection.save(obj);
});
}
db.eval(addRandom, db.things);
Benchmark results
This method is much faster than the skip() method (of ceejayoz) and generates more uniformly random documents than the "cookbook" method reported by Michael:
For a collection with 1,000,000 elements:
This method takes less than a millisecond on my machine
the skip() method takes 180 ms on average
The cookbook method will cause large numbers of documents to never get picked because their random number does not favor them.
This method will pick all elements evenly over time.
In my benchmark it was only 30% slower than the cookbook method.
the randomness is not 100% perfect but it is very good (and it can be improved if necessary)
This recipe is not perfect - the perfect solution would be a built-in feature as others have noted.
However it should be a good compromise for many purposes.
Here is a way using the default ObjectId values for _id and a little math and logic.
// Get the "min" and "max" timestamp values from the _id in the collection and the
// diff between.
// 4-bytes from a hex string is 8 characters
var min = parseInt(db.collection.find()
.sort({ "_id": 1 }).limit(1).toArray()[0]._id.str.substr(0,8),16)*1000,
max = parseInt(db.collection.find()
.sort({ "_id": -1 })limit(1).toArray()[0]._id.str.substr(0,8),16)*1000,
diff = max - min;
// Get a random value from diff and divide/multiply be 1000 for The "_id" precision:
var random = Math.floor(Math.floor(Math.random(diff)*diff)/1000)*1000;
// Use "random" in the range and pad the hex string to a valid ObjectId
var _id = new ObjectId(((min + random)/1000).toString(16) + "0000000000000000")
// Then query for the single document:
var randomDoc = db.collection.find({ "_id": { "$gte": _id } })
.sort({ "_id": 1 }).limit(1).toArray()[0];
That's the general logic in shell representation and easily adaptable.
So in points:
Find the min and max primary key values in the collection
Generate a random number that falls between the timestamps of those documents.
Add the random number to the minimum value and find the first document that is greater than or equal to that value.
This uses "padding" from the timestamp value in "hex" to form a valid ObjectId value since that is what we are looking for. Using integers as the _id value is essentially simplier but the same basic idea in the points.
Now you can use the aggregate.
Example:
db.users.aggregate(
[ { $sample: { size: 3 } } ]
)
See the doc.
In Python using pymongo:
import random
def get_random_doc():
count = collection.count()
return collection.find()[random.randrange(count)]
Using Python (pymongo), the aggregate function also works.
collection.aggregate([{'$sample': {'size': sample_size }}])
This approach is a lot faster than running a query for a random number (e.g. collection.find([random_int]). This is especially the case for large collections.
it is tough if there is no data there to key off of. what are the _id field? are they mongodb object id's? If so, you could get the highest and lowest values:
lowest = db.coll.find().sort({_id:1}).limit(1).next()._id;
highest = db.coll.find().sort({_id:-1}).limit(1).next()._id;
then if you assume the id's are uniformly distributed (but they aren't, but at least it's a start):
unsigned long long L = first_8_bytes_of(lowest)
unsigned long long H = first_8_bytes_of(highest)
V = (H - L) * random_from_0_to_1();
N = L + V;
oid = N concat random_4_bytes();
randomobj = db.coll.find({_id:{$gte:oid}}).limit(1);
You can pick a random timestamp and search for the first object that was created afterwards.
It will only scan a single document, though it doesn't necessarily give you a uniform distribution.
var randRec = function() {
// replace with your collection
var coll = db.collection
// get unixtime of first and last record
var min = coll.find().sort({_id: 1}).limit(1)[0]._id.getTimestamp() - 0;
var max = coll.find().sort({_id: -1}).limit(1)[0]._id.getTimestamp() - 0;
// allow to pass additional query params
return function(query) {
if (typeof query === 'undefined') query = {}
var randTime = Math.round(Math.random() * (max - min)) + min;
var hexSeconds = Math.floor(randTime / 1000).toString(16);
var id = ObjectId(hexSeconds + "0000000000000000");
query._id = {$gte: id}
return coll.find(query).limit(1)
};
}();
My solution on php:
/**
* Get random docs from Mongo
* #param $collection
* #param $where
* #param $fields
* #param $limit
* #author happy-code
* #url happy-code.com
*/
private function _mongodb_get_random (MongoCollection $collection, $where = array(), $fields = array(), $limit = false) {
// Total docs
$count = $collection->find($where, $fields)->count();
if (!$limit) {
// Get all docs
$limit = $count;
}
$data = array();
for( $i = 0; $i < $limit; $i++ ) {
// Skip documents
$skip = rand(0, ($count-1) );
if ($skip !== 0) {
$doc = $collection->find($where, $fields)->skip($skip)->limit(1)->getNext();
} else {
$doc = $collection->find($where, $fields)->limit(1)->getNext();
}
if (is_array($doc)) {
// Catch document
$data[ $doc['_id']->{'$id'} ] = $doc;
// Ignore current document when making the next iteration
$where['_id']['$nin'][] = $doc['_id'];
}
// Every iteration catch document and decrease in the total number of document
$count--;
}
return $data;
}
In order to get a determinated number of random docs without duplicates:
first get all ids
get size of documents
loop geting random index and skip duplicated
number_of_docs=7
db.collection('preguntas').find({},{_id:1}).toArray(function(err, arr) {
count=arr.length
idsram=[]
rans=[]
while(number_of_docs!=0){
var R = Math.floor(Math.random() * count);
if (rans.indexOf(R) > -1) {
continue
} else {
ans.push(R)
idsram.push(arr[R]._id)
number_of_docs--
}
}
db.collection('preguntas').find({}).toArray(function(err1, doc1) {
if (err1) { console.log(err1); return; }
res.send(doc1)
});
});
The best way in Mongoose is to make an aggregation call with $sample.
However, Mongoose does not apply Mongoose documents to Aggregation - especially not if populate() is to be applied as well.
For getting a "lean" array from the database:
/*
Sample model should be init first
const Sample = mongoose …
*/
const samples = await Sample.aggregate([
{ $match: {} },
{ $sample: { size: 33 } },
]).exec();
console.log(samples); //a lean Array
For getting an array of mongoose documents:
const samples = (
await Sample.aggregate([
{ $match: {} },
{ $sample: { size: 27 } },
{ $project: { _id: 1 } },
]).exec()
).map(v => v._id);
const mongooseSamples = await Sample.find({ _id: { $in: samples } });
console.log(mongooseSamples); //an Array of mongoose documents
I would suggest using map/reduce, where you use the map function to only emit when a random value is above a given probability.
function mapf() {
if(Math.random() <= probability) {
emit(1, this);
}
}
function reducef(key,values) {
return {"documents": values};
}
res = db.questions.mapReduce(mapf, reducef, {"out": {"inline": 1}, "scope": { "probability": 0.5}});
printjson(res.results);
The reducef function above works because only one key ('1') is emitted from the map function.
The value of the "probability" is defined in the "scope", when invoking mapRreduce(...)
Using mapReduce like this should also be usable on a sharded db.
If you want to select exactly n of m documents from the db, you could do it like this:
function mapf() {
if(countSubset == 0) return;
var prob = countSubset / countTotal;
if(Math.random() <= prob) {
emit(1, {"documents": [this]});
countSubset--;
}
countTotal--;
}
function reducef(key,values) {
var newArray = new Array();
for(var i=0; i < values.length; i++) {
newArray = newArray.concat(values[i].documents);
}
return {"documents": newArray};
}
res = db.questions.mapReduce(mapf, reducef, {"out": {"inline": 1}, "scope": {"countTotal": 4, "countSubset": 2}})
printjson(res.results);
Where "countTotal" (m) is the number of documents in the db, and "countSubset" (n) is the number of documents to retrieve.
This approach might give some problems on sharded databases.
You can pick random _id and return corresponding object:
db.collection.count( function(err, count){
db.collection.distinct( "_id" , function( err, result) {
if (err)
res.send(err)
var randomId = result[Math.floor(Math.random() * (count-1))]
db.collection.findOne( { _id: randomId } , function( err, result) {
if (err)
res.send(err)
console.log(result)
})
})
})
Here you dont need to spend space on storing random numbers in collection.
The following aggregation operation randomly selects 3 documents from the collection:
db.users.aggregate(
[ { $sample: { size: 3 } } ]
)
https://docs.mongodb.com/manual/reference/operator/aggregation/sample/
MongoDB now has $rand
To pick n non repeat items, aggregate with { $addFields: { _f: { $rand: {} } } } then $sort by _f and $limit n.
I'd suggest adding a random int field to each object. Then you can just do a
findOne({random_field: {$gte: rand()}})
to pick a random document. Just make sure you ensureIndex({random_field:1})
When I was faced with a similar solution, I backtracked and found that the business request was actually for creating some form of rotation of the inventory being presented. In that case, there are much better options, which have answers from search engines like Solr, not data stores like MongoDB.
In short, with the requirement to "intelligently rotate" content, what we should do instead of a random number across all of the documents is to include a personal q score modifier. To implement this yourself, assuming a small population of users, you can store a document per user that has the productId, impression count, click-through count, last seen date, and whatever other factors the business finds as being meaningful to compute a q score modifier. When retrieving the set to display, typically you request more documents from the data store than requested by the end user, then apply the q score modifier, take the number of records requested by the end user, then randomize the page of results, a tiny set, so simply sort the documents in the application layer (in memory).
If the universe of users is too large, you can categorize users into behavior groups and index by behavior group rather than user.
If the universe of products is small enough, you can create an index per user.
I have found this technique to be much more efficient, but more importantly more effective in creating a relevant, worthwhile experience of using the software solution.
non of the solutions worked well for me. especially when there are many gaps and set is small.
this worked very well for me(in php):
$count = $collection->count($search);
$skip = mt_rand(0, $count - 1);
$result = $collection->find($search)->skip($skip)->limit(1)->getNext();
My PHP/MongoDB sort/order by RANDOM solution. Hope this helps anyone.
Note: I have numeric ID's within my MongoDB collection that refer to a MySQL database record.
First I create an array with 10 randomly generated numbers
$randomNumbers = [];
for($i = 0; $i < 10; $i++){
$randomNumbers[] = rand(0,1000);
}
In my aggregation I use the $addField pipeline operator combined with $arrayElemAt and $mod (modulus). The modulus operator will give me a number from 0 - 9 which I then use to pick a number from the array with random generated numbers.
$aggregate[] = [
'$addFields' => [
'random_sort' => [ '$arrayElemAt' => [ $randomNumbers, [ '$mod' => [ '$my_numeric_mysql_id', 10 ] ] ] ],
],
];
After that you can use the sort Pipeline.
$aggregate[] = [
'$sort' => [
'random_sort' => 1
]
];
My simplest solution to this ...
db.coll.find()
.limit(1)
.skip(Math.floor(Math.random() * 500))
.next()
Where you have at least 500 items on collections
If you have a simple id key, you could store all the id's in an array, and then pick a random id. (Ruby answer):
ids = #coll.find({},fields:{_id:1}).to_a
#coll.find(ids.sample).first
Using Map/Reduce, you can certainly get a random record, just not necessarily very efficiently depending on the size of the resulting filtered collection you end up working with.
I've tested this method with 50,000 documents (the filter reduces it to about 30,000), and it executes in approximately 400ms on an Intel i3 with 16GB ram and a SATA3 HDD...
db.toc_content.mapReduce(
/* map function */
function() { emit( 1, this._id ); },
/* reduce function */
function(k,v) {
var r = Math.floor((Math.random()*v.length));
return v[r];
},
/* options */
{
out: { inline: 1 },
/* Filter the collection to "A"ctive documents */
query: { status: "A" }
}
);
The Map function simply creates an array of the id's of all documents that match the query. In my case I tested this with approximately 30,000 out of the 50,000 possible documents.
The Reduce function simply picks a random integer between 0 and the number of items (-1) in the array, and then returns that _id from the array.
400ms sounds like a long time, and it really is, if you had fifty million records instead of fifty thousand, this may increase the overhead to the point where it becomes unusable in multi-user situations.
There is an open issue for MongoDB to include this feature in the core... https://jira.mongodb.org/browse/SERVER-533
If this "random" selection was built into an index-lookup instead of collecting ids into an array and then selecting one, this would help incredibly. (go vote it up!)
This works nice, it's fast, works with multiple documents and doesn't require populating rand field, which will eventually populate itself:
add index to .rand field on your collection
use find and refresh, something like:
// Install packages:
// npm install mongodb async
// Add index in mongo:
// db.ensureIndex('mycollection', { rand: 1 })
var mongodb = require('mongodb')
var async = require('async')
// Find n random documents by using "rand" field.
function findAndRefreshRand (collection, n, fields, done) {
var result = []
var rand = Math.random()
// Append documents to the result based on criteria and options, if options.limit is 0 skip the call.
var appender = function (criteria, options, done) {
return function (done) {
if (options.limit > 0) {
collection.find(criteria, fields, options).toArray(
function (err, docs) {
if (!err && Array.isArray(docs)) {
Array.prototype.push.apply(result, docs)
}
done(err)
}
)
} else {
async.nextTick(done)
}
}
}
async.series([
// Fetch docs with unitialized .rand.
// NOTE: You can comment out this step if all docs have initialized .rand = Math.random()
appender({ rand: { $exists: false } }, { limit: n - result.length }),
// Fetch on one side of random number.
appender({ rand: { $gte: rand } }, { sort: { rand: 1 }, limit: n - result.length }),
// Continue fetch on the other side.
appender({ rand: { $lt: rand } }, { sort: { rand: -1 }, limit: n - result.length }),
// Refresh fetched docs, if any.
function (done) {
if (result.length > 0) {
var batch = collection.initializeUnorderedBulkOp({ w: 0 })
for (var i = 0; i < result.length; ++i) {
batch.find({ _id: result[i]._id }).updateOne({ rand: Math.random() })
}
batch.execute(done)
} else {
async.nextTick(done)
}
}
], function (err) {
done(err, result)
})
}
// Example usage
mongodb.MongoClient.connect('mongodb://localhost:27017/core-development', function (err, db) {
if (!err) {
findAndRefreshRand(db.collection('profiles'), 1024, { _id: true, rand: true }, function (err, result) {
if (!err) {
console.log(result)
} else {
console.error(err)
}
db.close()
})
} else {
console.error(err)
}
})
ps. How to find random records in mongodb question is marked as duplicate of this question. The difference is that this question asks explicitly about single record as the other one explicitly about getting random documents.
For me, I wanted to get the same records, in a random order, so I created an empty array used to sort, then generated random numbers between one and 7( I have seven fields). So each time I get a different value, I assign a different random sort.
It is 'layman' but it worked for me.
//generate random number
const randomval = some random value;
//declare sort array and initialize to empty
const sort = [];
//write a conditional if else to get to decide which sort to use
if(randomval == 1)
{
sort.push(...['createdAt',1]);
}
else if(randomval == 2)
{
sort.push(...['_id',1]);
}
....
else if(randomval == n)
{
sort.push(...['n',1]);
}
If you're using mongoid, the document-to-object wrapper, you can do the following in
Ruby. (Assuming your model is User)
User.all.to_a[rand(User.count)]
In my .irbrc, I have
def rando klass
klass.all.to_a[rand(klass.count)]
end
so in rails console, I can do, for example,
rando User
rando Article
to get documents randomly from any collection.
you can also use shuffle-array after executing your query
var shuffle = require('shuffle-array');
Accounts.find(qry,function(err,results_array){
newIndexArr=shuffle(results_array);
What works efficiently and reliably is this:
Add a field called "random" to each document and assign a random value to it, add an index for the random field and proceed as follows:
Let's assume we have a collection of web links called "links" and we want a random link from it:
link = db.links.find().sort({random: 1}).limit(1)[0]
To ensure the same link won't pop up a second time, update its random field with a new random number:
db.links.update({random: Math.random()}, link)

Append Collections together

I have two collections, both have a structure like this:
id trips_in
1 5
2 10
id trips_out
1 6
2 8
My question is how can I combine them into a single collection like such:
id trips_in trips_out
1 5 6
2 10 8
I found out about mapReduce, but its functionality looks like more than what I need. I wrote the following query:
tripsInMap = function() {
var values = {
trips_in: this.trips_in
};
emit(this._id, values);
};
tripsOutMap = function() {
var values = {
trips_out: this.trips_out
};
emit(this._id, values);
};
reduce = function(key, values) {
var result = {
"trips_out" : "",
"trips_in" : ""
};
values.forEach(function(value) {
if(value.trips_out !== null) {result.trips_out = value.trips_out;}
if(value.trips_in !== null) {result.trips_in = value.trips_in;}
});
return result;
}
db.tripsIn.mapReduce(tripsInMap, reduce, {"out": {"reduce": "joined"}});
db.tripsOut.mapReduce(tripsOutMap, reduce, {"out": {"reduce": "joined"}});
However I end up with "trips_in": undefined. I wonder if there is a better method.
While this may not be the fastest way, you could try something like this:
// Create the new collection with data from the tripsIn collection
db.tripsIn.find().forEach( function(trip) {
db.tripsJoined.insert({ _id: trip._id, trips_in: trip.trips_in, trips_out: 0 });
})
// Update the trips_out field in the tripsJoined collection
// using upsert:true to insert records that are not found
db.tripsOut.find().forEach( function(trip) {
db.tripsJoined.update(
{ _id: trip._id},
{$inc: {trips_in: 0, trips_out: trip.trips_out}},
{upsert: true});
})
The first line will iterate through each document in the tripsIn collection and insert a corresponding document in the tripsJoined collection with the trips_out field set.
The second line will iterate over the tripsOut collection, and for each document it will update the corresponding tripsJoined document with the trips_out value.
Note that I added {$inc: {trips_in: 0... and upsert:true. This was done so that if any documents of trips exist in the tripsOut collection that do not have a corresponding _id value in the tripsIn collection, the document is inserted and the trips_in field is initialized to 0.

Mongoose - Efficient update on an indexed array of mongoose.Schema.Types.Mixed

i have the following simplified Scheme:
var restsSchema = new Schema({
name: String
menu: [mongoose.Schema.Types.Mixed]
});
My document can look like:
{
name: "Sandwiches & More",
menu: [
{id:1,name:"Tona Sandwich",price: 10, soldCounter:0},
{id:2,name:"Salami Sandwich",price: 10, soldCounter:0},
{id:3,name:"Cheese Sandwich",price: 10, soldCounter:0}
]
}
The collection rests is indexed with:
db.rests.createIndex( { "menu.id": 1} , { unique: true })
Lets say i have this array of ids [1,3] and based on that i need to increment the soldCounter by 1 of menu items with ids=1 or 3.
What will be the must efficient way of doing so?
thanks for the helpers!
EDIT:
I have used the following solution:
db.model('rests').update({ _id: restid,'menu.id': {$in: ids}}, {$inc: {'menu.$.soldCounter': 1}}, {multi: true},function(err) {
if(err)
console.log("Error while updating sold counters: " + err.message);
});
where ids is an array of integers with ids of menu items.
restid is the id of the specific document we want to edit in the collection.
For some reason only the first id in the ids array is being updated.
There is a way of doing multiple updates, here it is:
Just make sure you have the indexes in the array you want to update.
var update = { $inc: {} };
for (var i = 0; i < indexes.length; ++i) {
update.$inc[`menu.${indexes[i]}.soldCounter`] = 1;
}
Rests.update({ _id: restid }, update, function(error) {
// ...
});
it seems not possible to update multiple subdocuments at once (see this answer). So a find & save seems to be the only solution.
Rest.findById(restId).then(function(rest){
var menus = rest.menu.filter(function(x){
return menuIds.indexOf(x.id) != -1;
});
for (var menu of menus){
menu.soldCounter++;
}
rest.save();
});
In the end it's only one find and one save requests.

Resources