Static column in Cassandra - cassandra

Can someone explain in simple terms what is the static column in Cassandra, and its use?
I came across this link Static column, but wasn't able to understand it much.

Static column is a way to associate data with the whole partition, so it will be shared between all rows inside that partition. There are legitimate cases, when all rows need to have the same data, and when data is updated, we won't need to update every row.
One example that comes in mind is e-commerce. For example, you're selling something, and you're selling in different countries with different currency & different prices. But some things are common between them, like, description, sizes, etc. In this case we can model it as following:
create table articles (
sku text,
description text static,
country text,
currency text,
price decimal,
primary key (sku, country)
);
in this case, when you do select * from articles where sku = ... and country = ... then you get description anyway, and you can update description only with update articles set description = '...' where sku = ..., and next select will pull updated description.
Also, static columns may exist in partition without any rows. One of the use cases that I've seen is collection of the aggregated information, where detailed data were stored as individual rows with some TTL, and there was a job that aggregated data into static column, so when rows are expired, then this partition still stays only with aggregated data.

Related

cassandra - simple/basic data modeling to retrieve all employees

Creating the following employee column family in Cassandra
Case 1:
CREATE TABLE employee (
name text,
designation text,
gender text,
created_by text,
created_date timestamp,
modified_by text,
modified_date timestamp,
PRIMARY KEY (name)
);
From UI, if i wanted to get all employee, it is not possible to
retrieve. is it true?
select * from employee; //not possible as it is partitioned by name
Case 2:
I was told to do this way to retrieve all employees.
We need to design this with a static key, to retrieve all the employees.
CREATE TABLE employee (
static_name text,
name text,
designation text,
gender text,
created_by text,
created_date timestamp,
modified_by text,
modified_date timestamp,
PRIMARY KEY (static_name,name)
);
static_name i.e.) "EMPLOYEE" will be the partition key and name will the clustering key. Primary key, combination of both static_name and name
static_name -> every time you add the employee , insert with the static value i.e) EMPLOYEE
now, you will be able to do "select all employees query"
//this will return you all the employees
select * from employee where static_name='EMPLOYEE';
is this true? can't we use case 1 to return all the employees?
Both approaches are o.k. with some catches
Approach 1:
When you say UI I guess you mean to use simple select * ... it's correct that this won't really work out of the box if you want to get every single one of them out. Especially if the data set is big. You could use pagination on a driver (I'm not 100% sure since I hadn't had a case in a while to use it) but when I needed to jump over all the partition I would use the token function i.e.:
select token(name), name from employee limit 1;
system.token(name) | name
----------------------+------
-8839064797231613815 | a
now you use the result of the token and put it into next query. This would have to be done by your program. After it would fetch all the elements that are greater than ... you would also need to start for all lower than the -8839064797231613815.
select token(name), name from employee where token(name) > -8839064797231613815 limit 1;
system.token(name) | name
----------------------+------
-8198557465434950441 | c
and then I would wrap this into a loop until I would fetch all the elements out. (I think this is also how spark cassandra does it when retrieving wide rows out from a cluster).
Disadvantage of this model is that it's really bad because it has to go all over the cluster and is more or less to be used in analytical work loads. Since you mentioned UI, It would take the user too long to get the result, so I would advise not to use approach 1 in UI related stuff.
Approach 2.
Disadvantage of the second one is that it would be what is called a hot row. Meaning every update would go to a single partition and this is most of the time bad model.
The advantage is that you could easily paginate over the one partition and get your data out by pagination functions built into the driver.
This would how ever behave just fine if you have moderate load (tens or low hundreds updates per second) and relatively low number of users, let's say for 100 000 this would work just fine. If your numbers are greater you have to somehow split up the users into multiple partitions so that the "load" gets distributed more evenly.
One possibility is to include letter of alphabet into "EMPLOYEE" ... so you would have "EMPLOYE_A", "EMPLOYEE_B" etc ... this would work relatively well. Not ideal again because of the lexicographical distribution and some partitions may get relatively larger amounts of that which is also not ideal.
One approach would be to create some artificial columns, let's say by design you say there are 10 buckets and when you insert into "EMPLOYEE" partition you just add (random bucket to the static prefix) "EMPLOYEE_1" and so on ... but when retrieving you go over specific partition until you exhaust the result.

How to model for repeated information on many records on cassandra

I have a massively huge table with hundreds of billions of records and I mean to add a field in this table of which the same value would be repeated for millions of records. I don't know how to efficiently model this in cassandra. Allow me to elaborate:
I have a generic table:
CREATE TABLE readings (
key int,
key2 int,
time timestamp,
name text,
PRIMARY KEY ((key, key2) time)
)
This table has 700.000.000+ records.
I want to create a field in this table, named source. This field indicates where the record was gotten from (since the software has many ways of receiving the information on the reading table). One possible value for this field is "XML: path\to\file.xml" or "Direct import from the X database" or even "Manually added", I want this to be a descriptive field, used exclusively to allow later maintenance in the database where we want to manipulate only records from a given source.
The queries I want to run that I can't now are:
Which records on the readings table were gotten from a given source?
What is the source of a given record?
A solution would be for me to create a table such as:
CREATE TABLE readings_per_source(
source text,
key int,
key2 int,
time timestamp,
PRIMARY KEY (source, key, key2, time)
)
which would allow me to execute the first query, but would also mean that I would create 700.000.000+ new records on my database with a lot of information, which would take a lot of unnecessary storage space since tens of millions of these records would have the same value for source.
If this was a relational environment, I would create a source_id field on the readings table and a source table with id (PK) and name fields, that would mean storing only an additional integer for each row on the readings table and a new table with as many records as different sources there was.
How does one go about modelling this in cassandra?
Your schema
CREATE TABLE readings_per_source(
source text,
key int,
key2 int,
time timestamp,
PRIMARY KEY (source, key, key2, time)
)
is a very bad idea because source is the partition key and you can have millions of records sharing the same source e.g. having a very very wide partition --> hot spots
For you second query, What is the source of a given record? is it quite trivial if you access the data using the record primary keys (key, key2). The source column can be added as just a regular column into the table
For the first query Which records on the readings table were gotten from a given source? it is trickier. The idea here is to fetch all the records having the same source.
Do you realize that this query can potentially return tens of millions of records ?
If it's what you want to do, there is a solution, use the new SASI secondary index (read my blog post for all details) and create an index on the source column
CREATE TABLE readings (
key int,
key2 int,
time timestamp,
name text,
source text,
PRIMARY KEY ((key, key2), time)
)
CREATE CUSTOM INDEX source_idx ON readings(source)
USING 'org.apache.cassandra.index.sasi.SASIIndex'
WITH OPTIONS = {
'mode': 'PREFIX',
'analyzer_class': 'org.apache.cassandra.index.sasi.analyzer.NonTokenizingAnalyzer',
'case_sensitive': 'false'
};
Then to fetch all records having the same source, use server-side paging feature of the Java driver (or any other Datastax driver)
http://www.datastax.com/2015/03/how-to-do-joins-in-apache-cassandra-and-datastax-enterprise is a pretty good article on how to go about joining tables in Cassandra.
normalized data will always take up less storage than de-normalized (flat) data (provided the related data is larger than the key being used to join the tables together) but requires joins which take more horsepower to compute during queries.
There's always a trade-off. There's also a tradeoff concerning state with fully normalized data, one example being the customer who changes addresses. In a fully normalized schema, once the address change is made, all invoices for the customer, past and present show the new address. This isn't always desirable.
Often it's desirable to partially normalize to provide historic state on records where it's important to show the state of the data at a given time, such as on invoices. In that case you'd store a copy of the customer address data on the invoice at the time of invoice creation.
This is especially important for pricing and taxes as well. You want the price/tax stored with the invoice so you can show what the customer paid at the time the invoice was created, so when accounting runs monthly, yearly and beyond numbers that the prices on a given invoice are correct for the date on the invoice, even though the prices of the products may have changed. Otherwise you have an accounting nightmare!
There is a lot more to consider than simply storage space when deciding how to normalize/de-normalize a schema.
Sorry for rambling...

Cassandra data modeling

So I'm designing this data model for product price tracking.
A product can be followed by many users and an user can follow many products, so it's a many to many relation.
The products are under constant tracking, but a new price is inserted only if it has varied from the previous one.
The users have set an upper price limit for their followed products, so every time a price varies, the preferences are checked and the users will be notified if the price has dropped below their treshold.
So initially I thought of the following product model:
However "subscriberEmails" is a list collection that will handle up to 65536 elements. But being a big data solution, it's a boundary that we don't want to have. So we end up writing a separate table for that:
So now "usersByProduct" can have up to 2 billion columns, fair enough. And the user preferences are stored in a "Map" which is again limited but we think it's a good maximum number of products to follow by user.
Now the problem we're facing is the following:
Every time we want to update a product's price we would have to make a query like this:
INSERT INTO products("Id", date, price) VALUES (7dacedd2-c09b-46c5-8686-00c2a03c71dd, dateof(now()), 24.87); // Example only
But INSERT operations don't admit other conditional clauses than (IF NOT EXISTS) and that isn't what we want. We need to update the price only if it's different from the previous one, so this forces us to make two queries (one for reading current value and another to update it if necessary).
PD. UPDATE operations do have IF conditions but it's not our case because we need an INSERT.
UPDATE products SET date = dateof(now()) WHERE "Id" = 7dacedd2-c09b-46c5-8686-00c2a03c71dd IF price != 20.3; // example only
Don't try to apply a normal model on a cassandra database. It may work but you'll end up with terrible performance and scalability.
The recommended approach to Cassandra data modeling is to first figure out your read queries against the database and structure your data so that these reads are cheap. You'll probably need to duplicate writes somewhat but it's OK because writes are pretty cheap in Cassandra.
For your specific use case, the key query seems to be able to get all users interested in a price change in a product, so you create a table for this, for example:
create table productSubscriptions (
productId uuid,
priceLimit float,
createdAt timestamp,
email text,
primary key (productId,priceLimit,createdAt)
);
but since you also need to know all product subscriptions for a user, you all need a user-keyed table of the same data:
create table userProductSubscriptions (
email text,
productId uuid,
priceLimit float,
primary key (email, productId)
)
With these 2 tables, I guess you can see that all your main queries can be done with a single-row select and your insert/delete are straightforward but will require you to modify both tables in sync.
Obviously, you'll need to flesh out a bit more the schema for your complete need but this should give you an example on how to think about your cassandra schema.
Conditional update issue
For your conditional insert issue, the easiest answer is: do it with an UPDATE if you really need it (update and insert are nearly identical in CQL) but it's a very expensive operation so avoid it if you can.
For your use case, I would split your product table in three :
create table products (
category uuid,
productId uuid,
url text,
price float,
primary key (category, productId)
)
create table productPricingAudit (
productId uuid,
date timestamp,
price float,
primary key (productId, date)
)
create table priceScheduler (
day text,
checktime timestamp,
productId uuid,
url text,
primary key (day, checktime)
)
products table can hold for full catalog, optionally split in categories (so that listing all products in a single category is a single-row select)
productPricingAudit would have an insert with the latest price retrieved whatever it is since this will let you debug any pricing issue you may have
priceScheduler holds all the check to be made for a given day, ordered by check time. Your scheduler simply has to make a column range query on single row whenever it runs.
With such a schema, you don't care about the conditional updates, you simply issue 3 inserts whenever you update a product price even it doesn't change.
Okay, I will try to answer my own question: conditional inserts other than "IF NOT EXISTS" are not supported in Cassandra by the date, period.
The closest thing is a conditional update, but that doesn't work in our scenario. So there's one simple option left: application side logic. This means that you have to read the previous entry and perform the decision on your application. The obvious downside is that 2 queries are performed (one SELECT and one INSERT) which obviously adds latency.
However this suits our application because every time we perform a query to enqueue all items that should be checked, we can select the items urls and their current prices too. So the workers that check the latest price can then make the decision of inserting or not because they have the current price to compare with.
So... A query similar to this would be performed every X minutes:
SELECT id, url, price FROM products WHERE "nextCheckTime" < now();
// example only, wouldn't even work if nextCheckTime is not part of the PK or index
This is a very costly operation to perform on a Cassandra cluster because it has to go through all rows that are stored randomly in different nodes by default. Another downside is that we need some advanced and specific statistics regarding products and users.
So we've decided that a relational database will serve us better than Cassandra in this particular case.
We sadly leave all of Cassandra's advantages (fast inserts, easy scaling, built in sharding...) and look towards a MySQL Cluster or master-slave implementation.

Cassandra Hierachy Data Model

I'm newbie design cassandra data model and I need some help to think out the box.
Basically I need a hierarchical table, something pretty standard when talking about Employee.
You have a employee, say Big Boss, that have a list of employee under him.
Something like:
create table employee(id timeuuid, name text, employees list<employee>, primary key(id));
So, is there a way to model a hierarchical model in Cassandra adding the table type itself, or even another approach?
When trying this line above it give me
Bad Request: line 1:61 no viable alternative at input 'employee'
EDITED
I was thinking about 2 possibilities:
Add an uuid instead and in my java application find each uuid Employee when bringing up the "boss".
Working with Map, where the uuid is the id itself and my text would be the entire Row, then in my java application get the maps, convert each "text" employee into a Employee entity and finally return the whole object;
It really depends on your queries...one particular model would only be good for a set of queries, but not others.
You can store ids, and look them up again at the client side. This means n extra queries for each "query". This may or may not be a problem, as queries that hit a partition are fast. Using a map from id to name is also an option. This means you do extra work and denormalise the names into the map values. That's also valid. A third option is to use a UDT (user defined type). You could then have a list or set or even map. In cassandra 2.1, you could index the map keys/ values as well, allowing for some quite flexible querying.
https://www.datastax.com/documentation/cql/3.1/cql/cql_using/cqlUseUDT.html
One more approach could be to store a person's details as id, static columns for their attributes, and have "children" as columns in wide row format.
This could look like
create table person(
id int primary key,
name text static,
age int static,
employees map<int, employeeudt>
);
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/refStaticCol.html
Querying this will give you rows with the static properties repeated, but on disk, it's still held once. You can resolve the rest client side.

How to optimize Cassandra model while still supporting querying by contents of lists

I just switched from Oracle to using Cassandra 2.0 with Datastax driver and I'm having difficulty structuring my model for this big data approach. I have a Persons table with UUID and serialized Persons. These Persons have lists of addresses, names, identifications, and DOBs. For each of these lists I have an additional table with a compound key on each value in the respective list and the additional person_UUID column. This model feels too relational to me, but I don't know how else to structure it so that I can have index(am able to search by) on address, name, identification, and DOB. If Cassandra supported indexes on lists I would have just the one Persons table containing indexed lists for each of these.
In my application we receive transactions, which can contain within them 0 or more of each of those address, name, identification, and DOB. The persons are scored based on which person matched which criteria. A single person with the highest score is matched to a transaction. Any additional address, name, identification, and DOB data from the transaction that was matched is then added to that person.
The problem I'm having is that this matching is taking too long and the processing is falling far behind. This is caused by having to loop through result sets performing additional queries since I can't make complex queries in Cassandra, and I don't have sufficient memory to just do a huge select all and filter in java. For instance, I would like to select all Persons having at least two names in common with the transaction (names can have their order scrambled, so there is no first, middle, last; that would just be three names) but this would require a 'group by' which Cassandra does not support, and if I just selected all having any of the names in common in order to filter in java the result set is too large and i run out of memory.
I'm currently searching by only Identifications and Addresses, which yield a smaller result set (although it could still be hundreds) and for each one in this result set I query to see if it also matches on names and/or DOB. Besides still being slow this does not meet the project's requirements as a match on Name and DOB alone would be sufficient to link a transaction to a person if no higher score is found.
I know in Cassandra you should model your tables by the queries you do, not by the relationships of the entities, but I don't know how to apply this while maintaining the ability to query individually by address, name, identification, and DOB.
Any help or advice would be greatly appreciated. I'm very impressed by Cassandra but I haven't quite figured out how to make it work for me.
Tables:
Persons
[UUID | serialized_Person]
addresses
[address | person_UUID]
names
[name | person_UUID]
identifications
[identification | person_UUID]
DOBs
[DOB | person_UUID]
I did a lot more reading, and I'm now thinking I should change these tables around to the following:
Persons
[UUID | serialized_Person]
addresses
[address | Set of person_UUID]
names
[name | Set of person_UUID]
identifications
[identification | Set of person_UUID]
DOBs
[DOB | Set of person_UUID]
But I'm afraid of going beyond the max storage for a set(65,536 UUIDs) for some names and DOBs. Instead I think I'll have to do a dynamic column family with the column names as the Person_UUIDs, or is a row with over 65k columns very problematic as well? Thoughts?
It looks like you can't have these dynamic column families in the new version of Cassandra, you have to alter the table to insert the new column with a specific name. I don't know how to store more than 64k values for a row then. With a perfect distribution I will run out of space for DOBs with 23 million persons, I'm expecting to have over 200 million persons. Maybe I have to just have multiple set columns?
DOBs
[DOB | Set of person_UUID_A | Set of person_UUID_B | Set of person_UUID_C]
and I just check size and alter table if size = 64k? Anything better I can do?
I guess it's just CQL3 that enforces this and that if I really wanted I can still do dynamic columns with the Cassandra 2.0?
Ugh, this page from Datastax doc seems to say I had it right the first way...:
When to use a collection
This answer is not very specific, but I'll come back and add to it when I get a chance.
First thing - don't serialize your Persons into a single column. This complicates searching and updating any person info. OTOH, there are people that know what they're saying that disagree with this view. ;)
Next, don't normalize your data. Disk space is cheap. So, don't be afraid to write the same data to two places. You code will need to make sure that the right thing is done.
Those items feed into this: If you want queries to be fast, consider what you need to make that query fast. That is, create a table just for that query. That may mean writing data to multiple tables for multiple queries. Pick a query, and build a table that holds exactly what you need for that query, indexed on whatever you have available for the lookup, such as an id.
So, if you need to query by address, build a table (really, a column family) indexed on address. If you need to support another query based on identification, index on that. Each table may contain duplicate data. This means when you add a new user, you may be writing the same data to more than one table. While this seems unnatural if relational databases are the only kind you've ever used, but you get benefits in return - namely, horizontal scalability thanks to the CAP Theorem.
Edit:
The two column families in that last example could just hold identifiers into another table. So, voilĂ  you have made an index. OTOH, that means each query takes two reads. But, still will be a performance improvement in many cases.
Edit:
Attempting to explain the previous edit:
Say you have a users table/column family:
CREATE TABLE users (
id uuid PRIMARY KEY,
display_name text,
avatar text
);
And you want to find a user's avatar given a display name (a contrived example). Searching users will be slow. So, you could create a table/CF that serves as an index, let's call it users_by_name:
CREATE TABLE users_by_name (
display_name text PRIMARY KEY,
user_id uuid
}
The search on display_name is now done against users_by_name, and that gives you the user_id, which you use to issue a second query against users. In this case, user_id in users_by_name has the value of the primary key id in users. Both queries are fast.
Or, you could put avatar in users_by_name, and accomplish the same thing with one query by using more disk space.
CREATE TABLE users_by_name (
display_name text PRIMARY KEY,
avatar text
}

Resources