Is there a function that gets called to initialize (at least some) values of task_struct? Or is there any other function that gets called upon task (specifically, user-space process) creation?
Since the only way to create a new process in Linux is through the clone() syscall (or other variants like fork()), there is no real function to "create a new task" from scratch, but there sure is a function to duplicate an existing task, applying the needed modifications. The function used for this is copy_process(), which uses dup_task_struct() to duplicate the associated struct task_struct.
There is however one special exception to this rule: the init process (the first process created after booting) is created by the kernel itself (every other process is then created by init or by some child of init through clone() + execve()). The task_struct for the init task is statically defined at compile time (see here). You can look at this other answer if you want to know more.
Related
Kprobe has a pre-handler function vaguely documented as followed:
User's pre-handler (kp->pre_handler)::
#include <linux/kprobes.h>
#include <linux/ptrace.h>
int pre_handler(struct kprobe *p, struct pt_regs *regs);
Called with p pointing to the kprobe associated with the breakpoint,
and regs pointing to the struct containing the registers saved when
the breakpoint was hit. Return 0 here unless you're a Kprobes geek.
I was wondering if one can use this function (or any other Kprobe feature) to prevent a process from being executed \ forked.
As documented in the kernel documentation, you can change the execution path by changing the appropriate register (e.g., IP register in x86):
Changing Execution Path
-----------------------
Since kprobes can probe into a running kernel code, it can change the
register set, including instruction pointer. This operation requires
maximum care, such as keeping the stack frame, recovering the execution
path etc. Since it operates on a running kernel and needs deep knowledge
of computer architecture and concurrent computing, you can easily shoot
your foot.
If you change the instruction pointer (and set up other related
registers) in pre_handler, you must return !0 so that kprobes stops
single stepping and just returns to the given address.
This also means post_handler should not be called anymore.
Note that this operation may be harder on some architectures which use
TOC (Table of Contents) for function call, since you have to setup a new
TOC for your function in your module, and recover the old one after
returning from it.
So you might be able to block a process' execution by jumping over some code. I wouldn't recommend it; you're more likely to cause a kernel crash than to succeed in stopping the execution of a new process.
seccomp-bpf is probably better suited for your use case. This StackOverflow answer gives you all the information you need to leverage seccomp-bpf.
When I create a new thread in a program... in it's thread handle function, why do I pass variables that I want that thread to use through the thread function prototype as parameters (as a void pointer)? Since threads share the same memory segments (except for stack) as the main program, shouldn't I be able to just use the variables directly instead of passing parameters from main program to new thread?
Well, yes, you could use the variables directly. Maybe. Assuming that they aren't changed by some other thread before your thread starts running.
Also, a big part of passing parameters to functions (including thread functions) is to limit the amount of information the called function has to know about the outside world. If you pass the thread function everything it needs in order to do its work, then you can change the rest of the program with relative impunity and the thread will still continue to work. If, however, you force the thread to know that there is a global list of strings called MyStringList, then you can't change that global list without also affecting the thread.
Information hiding. Encapsulation. Separation of concerns. Etc.
You cannot pass parameters to a thread function in any kind of normal register/stack manner because thread functions are not called by the creating thread - they are given execution directly by the underlying OS and the API's that do this copy a fixed number of parameters, (usually only one void pointer), to the new and different stack of the new thread.
As Jim says, failure to understand this mechanism often results in disaster. There are numnerous questions on SO where the vars that devs. hope would be used by a new thread are RAII'd away before the new thread even starts.
I can find many examples regarding wait_queue_head.
It works as a signal, create a wait_queue_head, someone
can sleep using it until someother kicks it up.
But I can not find a good example of using wait_queue itself, supposedly very related to it.
Could someone gives example, or under the hood of them?
From Linux Device Drivers:
The wait_queue_head_t type is a fairly simple structure, defined in
<linux/wait.h>. It contains only a lock variable and a linked list
of sleeping processes. The individual data items in the list are of
type wait_queue_t, and the list is the generic list defined in
<linux/list.h>.
Normally the wait_queue_t structures are allocated on the stack by
functions like interruptible_sleep_on; the structures end up in the
stack because they are simply declared as automatic variables in the
relevant functions. In general, the programmer need not deal with
them.
Take a look at A Deeper Look at Wait Queues part.
Some advanced applications, however, can require dealing with
wait_queue_t variables directly. For these, it's worth a quick look at
what actually goes on inside a function like interruptible_sleep_on.
The following is a simplified version of the implementation of
interruptible_sleep_on to put a process to sleep:
void simplified_sleep_on(wait_queue_head_t *queue)
{
wait_queue_t wait;
init_waitqueue_entry(&wait, current);
current->state = TASK_INTERRUPTIBLE;
add_wait_queue(queue, &wait);
schedule();
remove_wait_queue (queue, &wait);
}
The code here creates a new wait_queue_t variable (wait, which gets
allocated on the stack) and initializes it. The state of the task is
set to TASK_INTERRUPTIBLE, meaning that it is in an interruptible
sleep. The wait queue entry is then added to the queue (the
wait_queue_head_t * argument). Then schedule is called, which
relinquishes the processor to somebody else. schedule returns only
when somebody else has woken up the process and set its state to
TASK_RUNNING. At that point, the wait queue entry is removed from the
queue, and the sleep is done
The internals of the data structures involved in wait queues:
Update:
for the users who think the image is my own - here is one more time the link to the Linux Device Drivers where the image is taken from
Wait queue is simply a list of processes and a lock.
wait_queue_head_t represents the queue as a whole. It is the head of the waiting queue.
wait_queue_t represents the item of the list - a single process waiting in the queue.
I have multithread server (inherits QTcpServer). When new connection appears, I create new task (inherits QRunnable), passing socket descriptor to constructor and push this task to QThreadpool (have 3 workers).
QThreadPool::globalInstance()->start(task);
In run() I dynamically create QTcpSocket, set socket descriptor and read first received byte. Based on value of this byte I create new specific task (also inherits QRunnable), passing to its ctr pointer to earlier created QTcpSocket object, and also push this task to QThreadpool.
This specific task make some routine and app crashes.
From log file, I see destructor of this specific task was called.
Also Qt Creator throws next error message:
QObject: Cannot create children for a parent that is in a different thread.
(Parent is QNativeSocketEngine(0x18c62290), parent's thread is QThread(0x18c603e0), current thread is QThread(0x18cc3b60)
QSocketNotifier: socket notifiers cannot be disabled from another thread
ASSERT failure in QCoreApplication::sendEvent: "Cannot send events to objects owned by a different thread. Current thread 18cc3b60. Receiver '' (of type 'QNativeSocketEngine') was created in thread 18c603e0", file kernel/qcoreapplication.cpp, line 420
I found similar posts but unfortunately I could not understand how to fix my problem.
Please, help me.
You cannot use QTcpSocket from two different threads, because QObjects are not thread-safe.
You've created your QTcpSocket in the first task, so it "lives" in the thread associated with that task. If you pass its pointer into another QRunnable, then a second thread will try to access it, which will break things.
You'll need to redesign your app in a way that doesn't share the same QTcpSocket between different threads. One possibility is to implement different specific functions in your original task, and simply select the appropriate function based on the first received byte
They seem to perform a reasonably similar task: launching a new thread that performs that selector quickly and easily. But are there any differences? Maybe with regards to memory management?
Both are identical.
In iOS and Mac OS X v10.5 and later, all objects have the ability to spawn a new thread and use it to execute one of their methods. The performSelectorInBackground:withObject: method creates a new detached thread and uses the specified method as the entry point for the new thread. For example, if you have some object (represented by the variable myObj) and that object has a method called doSomething that you want to run in a background thread, you could could use the following code to do that:
[myObj performSelectorInBackground:#selector(doSomething) withObject:nil];
The effect of calling this method is the same as if you called the detachNewThreadSelector:toTarget:withObject: method of NSThread with the current object, selector, and parameter object as parameters. The new thread is spawned immediately using the default configuration and begins running. Inside the selector, you must configure the thread just as you would any thread. For example, you would need to set up an autorelease pool (if you were not using garbage collection) and configure the thread’s run loop if you planned to use it. For information on how to configure new threads
I presume they are the same, as - (void)performSelectorInBackground:(SEL)aSelector withObject:(id)arg; is defined in NSThread.h in the NSObject (NSThreadPerformAdditions) category. That is nothing conclusive, but that is evidence in that direction.