Regression fit error in Apache Spark regression algorithm - apache-spark

I work on regression on Apache Spark. And I get everytime same error. I can't solve it.
model = LinearRegression(featuresCol = 'features', labelCol='label').fit(df)
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-80-3156cdf2ca47> in <module>
----> 1 model = lr.fit(df)
C:\ProgramData\Anaconda3\lib\site-packages\pyspark\ml\base.py in fit(self, dataset, params)
130 return self.copy(params)._fit(dataset)
131 else:
--> 132 return self._fit(dataset)
133 else:
134 raise ValueError("Params must be either a param map or a list/tuple of param maps, "
C:\ProgramData\Anaconda3\lib\site-packages\pyspark\ml\wrapper.py in _fit(self, dataset)
293
294 def _fit(self, dataset):
--> 295 java_model = self._fit_java(dataset)
296 model = self._create_model(java_model)
297 return self._copyValues(model)
C:\ProgramData\Anaconda3\lib\site-packages\pyspark\ml\wrapper.py in _fit_java(self, dataset)
290 """
291 self._transfer_params_to_java()
--> 292 return self._java_obj.fit(dataset._jdf)
293
294 def _fit(self, dataset):
C:\ProgramData\Anaconda3\lib\site-packages\py4j\java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
C:\ProgramData\Anaconda3\lib\site-packages\pyspark\sql\utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
C:\ProgramData\Anaconda3\lib\site-packages\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling o762.fit.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 3 in stage 66.0 failed 1 times, most recent failure: Lost task 3.0 in stage 66.0 (TID 133, localhost, executor driver): scala.MatchError: [null,1.0,[34.0,147.0,249.0,2006.0,7.0,30.0,38.0,2.0]] (of class org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema)
at org.apache.spark.ml.regression.LinearRegression.$anonfun$train$2(LinearRegression.scala:325)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
at scala.collection.Iterator.foreach(Iterator.scala:941)
at scala.collection.Iterator.foreach$(Iterator.scala:941)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1429)
at scala.collection.TraversableOnce.foldLeft(TraversableOnce.scala:160)
at scala.collection.TraversableOnce.foldLeft$(TraversableOnce.scala:158)
at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1429)
at scala.collection.TraversableOnce.aggregate(TraversableOnce.scala:217)
at scala.collection.TraversableOnce.aggregate$(TraversableOnce.scala:217)
at scala.collection.AbstractIterator.aggregate(Iterator.scala:1429)
at org.apache.spark.rdd.RDD.$anonfun$treeAggregate$3(RDD.scala:1145)
at org.apache.spark.rdd.RDD.$anonfun$treeAggregate$5(RDD.scala:1146)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitions$2(RDD.scala:801)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitions$2$adapted(RDD.scala:801)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:411)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:1889)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:1877)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:1876)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1876)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:274)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2110)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2059)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2048)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2158)
at org.apache.spark.rdd.RDD.$anonfun$fold$1(RDD.scala:1098)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.fold(RDD.scala:1092)
at org.apache.spark.rdd.RDD.$anonfun$treeAggregate$1(RDD.scala:1161)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.treeAggregate(RDD.scala:1137)
at org.apache.spark.ml.optim.WeightedLeastSquares.fit(WeightedLeastSquares.scala:105)
at org.apache.spark.ml.regression.LinearRegression.$anonfun$train$1(LinearRegression.scala:345)
at org.apache.spark.ml.util.Instrumentation$.$anonfun$instrumented$1(Instrumentation.scala:183)
at scala.util.Try$.apply(Try.scala:213)
at org.apache.spark.ml.util.Instrumentation$.instrumented(Instrumentation.scala:183)
at org.apache.spark.ml.regression.LinearRegression.train(LinearRegression.scala:319)
at org.apache.spark.ml.regression.LinearRegression.train(LinearRegression.scala:176)
at org.apache.spark.ml.Predictor.fit(Predictor.scala:118)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: scala.MatchError: [null,1.0,[34.0,147.0,249.0,2006.0,7.0,30.0,38.0,2.0]] (of class org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema)
at org.apache.spark.ml.regression.LinearRegression.$anonfun$train$2(LinearRegression.scala:325)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
at scala.collection.Iterator.foreach(Iterator.scala:941)
at scala.collection.Iterator.foreach$(Iterator.scala:941)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1429)
at scala.collection.TraversableOnce.foldLeft(TraversableOnce.scala:160)
at scala.collection.TraversableOnce.foldLeft$(TraversableOnce.scala:158)
at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1429)
at scala.collection.TraversableOnce.aggregate(TraversableOnce.scala:217)
at scala.collection.TraversableOnce.aggregate$(TraversableOnce.scala:217)
at scala.collection.AbstractIterator.aggregate(Iterator.scala:1429)
at org.apache.spark.rdd.RDD.$anonfun$treeAggregate$3(RDD.scala:1145)
at org.apache.spark.rdd.RDD.$anonfun$treeAggregate$5(RDD.scala:1146)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitions$2(RDD.scala:801)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitions$2$adapted(RDD.scala:801)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:411)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
What is the reason? df is dataframe. How can I solve it? I tried it in my computer and databricks, the result is same. My dataframe is features=[8 numbers], label= one number like [2.0,92.0,1.0,2002.0,9.0,37.0,2.0,2.0] and 99.4

Related

PySpark on Jupyterhub K8s || Unable to query data || Class org.apache.hadoop.fs.s3a.S3AFileSystem not found

Pyspark Version: 2.4.5
Hive Version: 1.2
Hadoop Version: 2.7
AWS-SDK Jar: 1.7.4
Hadoop-AWS: 2.7.3
When I am trying to show data I am getting Class org.apache.hadoop.fs.s3a.S3AFileSystem not found while I am passing all the information which all are required.
I passed all three for this config fs.s3.aws.credentials.provider
org.apache.hadoop.fs.s3a.BasicAWSCredentialsProvider
com.amazonaws.auth.InstanceProfileCredentialsProvider
com.amazonaws.auth.EnvironmentVariableCredentialsProvider
But nothing worked
Sample Code:
from pyspark.sql import SparkSession
sc = SparkSession.builder.getOrCreate()
sc._jsc.hadoopConfiguration().set("fs.s3a.impl","org.apache.hadoop.fs.s3a.S3AFileSystem")
sc._jsc.hadoopConfiguration().set('fs.s3.aws.credentials.provider', 'com.amazonaws.auth.EnvironmentVariableCredentialsProvider')
val = sc.sql("select * from customer.100_rating limit 5")
val.show()
Error:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-11-e244f76da033> in <module>
----> 1 val.show()
/usr/local/spark/python/pyspark/sql/dataframe.py in show(self, n, truncate, vertical)
378 """
379 if isinstance(truncate, bool) and truncate:
--> 380 print(self._jdf.showString(n, 20, vertical))
381 else:
382 print(self._jdf.showString(n, int(truncate), vertical))
/usr/local/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
/usr/local/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
/usr/local/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
**Py4JJavaError: An error occurred while calling o194.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 6, 10.101.101.238, executor 2): java.lang.RuntimeException: java.lang.ClassNotFoundException: Class org.apache.hadoop.fs.s3a.S3AFileSystem not found**
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2195)
at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2654)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2667)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:94)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2703)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2685)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:373)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:295)
at org.apache.hadoop.mapred.LineRecordReader.<init>(LineRecordReader.java:108)
at org.apache.hadoop.mapred.TextInputFormat.getRecordReader(TextInputFormat.java:67)
at org.apache.spark.rdd.HadoopRDD$$anon$1.liftedTree1$1(HadoopRDD.scala:267)
at org.apache.spark.rdd.HadoopRDD$$anon$1.<init>(HadoopRDD.scala:266)
at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:224)
at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:95)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
Caused by: java.lang.ClassNotFoundException: Class org.apache.hadoop.fs.s3a.S3AFileSystem not found
at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:2101)
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2193)
... 39 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1891)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1879)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1878)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1878)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:927)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:927)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:927)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2112)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2061)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2050)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:738)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:365)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3389)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2550)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2550)
at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3370)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:80)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:127)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:75)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3369)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2550)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2764)
at org.apache.spark.sql.Dataset.getRows(Dataset.scala:254)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:291)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class org.apache.hadoop.fs.s3a.S3AFileSystem not found
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2195)
at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2654)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2667)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:94)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2703)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2685)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:373)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:295)
at org.apache.hadoop.mapred.LineRecordReader.<init>(LineRecordReader.java:108)
at org.apache.hadoop.mapred.TextInputFormat.getRecordReader(TextInputFormat.java:67)
at org.apache.spark.rdd.HadoopRDD$$anon$1.liftedTree1$1(HadoopRDD.scala:267)
at org.apache.spark.rdd.HadoopRDD$$anon$1.<init>(HadoopRDD.scala:266)
at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:224)
at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:95)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
Caused by: java.lang.ClassNotFoundException: Class org.apache.hadoop.fs.s3a.S3AFileSystem not found
at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:2101)
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2193)
... 39 more
Please help me to fix the issue.
The issue has been fixed after adding AWS jars to the image which I was using to launch Spark-executor pods.

Error when writing pyspark's dataframe into parquet

cleaned_mercury.write.mode('overwrite').parquet("../data/transformed-data/cleaned_mercury.parquet")
cleaned_mercury is a dataframe, whenever i try to convert the data into parquet it returns an error, i tried looking for answer everywhere but i couldn't find one
~\AppData\Local\Temp/ipykernel_19676/2099139696.py in <module>
----> 1 cleaned_mercury.write.mode('overwrite').parquet("../data/transformed-data/cleaned_mercury.parquet")
2 cleaned_watsons.write.mode('overwrite').parquet("../data/transformed-data/cleaned_watsons.parquet")
3 cleaned_tgp.write.mode('overwrite').parquet("../data/transformed-data/cleaned_tgp.parquet")
4 cleaned_ssd.write.mode('overwrite').parquet("../data/transformed-data/cleaned_ssd.parquet")
5 cleaned_rose.write.mode('overwrite').parquet("../data/transformed-data/cleaned_rose.parquet")
C:\spark-3.2.0-bin-hadoop3.2\python\pyspark\sql\readwriter.py in parquet(self, path, mode, partitionBy, compression)
883 self.partitionBy(partitionBy)
884 self._set_opts(compression=compression)
--> 885 self._jwrite.parquet(path)
886
887 def text(self, path, compression=None, lineSep=None):
C:\spark-3.2.0-bin-hadoop3.2\python\lib\py4j-0.10.9.2-src.zip\py4j\java_gateway.py in __call__(self, *args)
1307
1308 answer = self.gateway_client.send_command(command)
-> 1309 return_value = get_return_value(
1310 answer, self.gateway_client, self.target_id, self.name)
1311
C:\spark-3.2.0-bin-hadoop3.2\python\pyspark\sql\utils.py in deco(*a, **kw)
109 def deco(*a, **kw):
110 try:
--> 111 return f(*a, **kw)
112 except py4j.protocol.Py4JJavaError as e:
113 converted = convert_exception(e.java_exception)
C:\spark-3.2.0-bin-hadoop3.2\python\lib\py4j-0.10.9.2-src.zip\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
Py4JJavaError: An error occurred while calling o1594.parquet.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.errors.QueryExecutionErrors$.jobAbortedError(QueryExecutionErrors.scala:496)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:251)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:186)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:113)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:111)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:125)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:110)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:110)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:106)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:481)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:82)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:481)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:457)
at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:106)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:93)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:91)
at org.apache.spark.sql.execution.QueryExecution.assertCommandExecuted(QueryExecution.scala:128)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:848)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:382)
at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:355)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:239)
at org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:781)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.lang.Thread.run(Unknown Source)
Caused by: java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
at org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Native Method)
at org.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:793)
at org.apache.hadoop.fs.FileUtil.canRead(FileUtil.java:1215)
at org.apache.hadoop.fs.FileUtil.list(FileUtil.java:1420)
at org.apache.hadoop.fs.RawLocalFileSystem.listStatus(RawLocalFileSystem.java:601)
at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1972)
at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:2014)
at org.apache.hadoop.fs.ChecksumFileSystem.listStatus(ChecksumFileSystem.java:761)
at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1972)
at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:2014)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.getAllCommittedTaskPaths(FileOutputCommitter.java:334)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.commitJobInternal(FileOutputCommitter.java:404)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.commitJob(FileOutputCommitter.java:377)
at org.apache.parquet.hadoop.ParquetOutputCommitter.commitJob(ParquetOutputCommitter.java:48)
at org.apache.spark.internal.io.HadoopMapReduceCommitProtocol.commitJob(HadoopMapReduceCommitProtocol.scala:182)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$write$20(FileFormatWriter.scala:240)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.util.Utils$.timeTakenMs(Utils.scala:605)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:240)
... 42 more
Turns out i dont have hadoop.dll installed, why do i figure out the answer on my own once i post my question here in stackoverflow https://github.com/steveloughran/winutils/blob/master/hadoop-2.7.1/bin/hadoop.dll

PySpark not working anymore after filtering

I'm using PySpark with this configuration:
configuration_cluster = (
SparkConf()
.set("spark.executor.cores", "4")
.set("spark.dynamicAllocation.maxExecutors", "20")
.set("spark.executor.memory", "20g")
.set("spark.driver.memory", "16g")
.set("spark.driver.maxResultSize", "8g")
.set("spark.sql.shuffle.partitions", "200")
.set("spark.kryoserializer.buffer.max", "1g")
.set("spark.dynamicAllocation.enabled", "true")
.set("spark.network.timeout", "180000")
.set("spark.sql.execution.arrow.pyspark.enabled", "true")
)
spark = (
SparkSession.builder.appName("myapp18398")
.config(conf=configuration_cluster)
.master("yarn")
.enableHiveSupport()
.getOrCreate()
)
Loading data (it's a big dataframe with over 11 million observation and many variables) and then using a simple show(1) it works without any problems
osm = spark.read.parquet(path)
osm.show(1)
but then if I filter and I use show(1) again it returns an error, as when the memory is not big enough.
osm = osm.select("id", "name", "location", "country")\
.dropDuplicates()
osm.show(1)
here the error:
[Stage 29:=> (1 + 9) / 56]21/04/14 14:30:32 120 ERROR TaskSetManager: Task 29 in stage 29.0 failed 4 times; aborting job
Py4JJavaError: An error occurred while calling o757.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 29 in stage 29.0 failed 4 times, most recent failure: Lost task 29.3 in stage 29.0 (TID 549, bdp03node12.mit01.ecb.de, executor 20): org.apache.spark.sql.execution.QueryExecutionException: Encounter error while reading parquet files. One possible cause: Parquet column cannot be converted in the corresponding files. Details:
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:195)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:103)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$11$$anon$1.hasNext(WholeStageCodegenExec.scala:624)
at org.apache.spark.sql.execution.columnar.CachedRDDBuilder$$anonfun$1$$anon$1.hasNext(InMemoryRelation.scala:131)
at org.apache.spark.storage.memory.MemoryStore.putIterator(MemoryStore.scala:221)
at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:299)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1176)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1167)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:1102)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:1167)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:893)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:335)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:286)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$11.apply(Executor.scala:407)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1408)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:413)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.parquet.io.ParquetDecodingException: Can not read value at 1 in block 0 in file /part-00000-f05ab4fb-cb54-4c37-b924-06968e4df455-c000.snappy.parquet
at org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:223)
at org.apache.parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:213)
at org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:103)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:183)
... 35 more
Caused by: java.lang.ClassCastException: org.apache.spark.sql.catalyst.expressions.MutableAny cannot be cast to org.apache.spark.sql.catalyst.expressions.MutableLong
at org.apache.spark.sql.catalyst.expressions.SpecificInternalRow.setLong(SpecificInternalRow.scala:283)
at org.apache.spark.sql.execution.datasources.parquet.ParquetRowConverter$RowUpdater.setLong(ParquetRowConverter.scala:169)
at org.apache.spark.sql.execution.datasources.parquet.ParquetPrimitiveConverter.addLong(ParquetRowConverter.scala:87)
at org.apache.parquet.column.impl.ColumnReaderImpl$2$4.writeValue(ColumnReaderImpl.java:275)
at org.apache.parquet.column.impl.ColumnReaderImpl.writeCurrentValueToConverter(ColumnReaderImpl.java:372)
at org.apache.parquet.io.RecordReaderImplementation.read(RecordReaderImplementation.java:407)
at org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:198)
... 40 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1890)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1878)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1877)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1877)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:929)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:929)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:929)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2111)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2060)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2049)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:740)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2081)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2102)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2121)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:365)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3383)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2544)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2544)
at org.apache.spark.sql.Dataset$$anonfun$53.apply(Dataset.scala:3364)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3363)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2544)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2758)
at org.apache.spark.sql.Dataset.getRows(Dataset.scala:254)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:291)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.sql.execution.QueryExecutionException: Encounter error while reading parquet files. One possible cause: Parquet column cannot be converted in the corresponding files. Details:
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:195)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:103)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$11$$anon$1.hasNext(WholeStageCodegenExec.scala:624)
at org.apache.spark.sql.execution.columnar.CachedRDDBuilder$$anonfun$1$$anon$1.hasNext(InMemoryRelation.scala:131)
at org.apache.spark.storage.memory.MemoryStore.putIterator(MemoryStore.scala:221)
at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:299)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1176)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1167)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:1102)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:1167)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:893)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:335)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:286)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$11.apply(Executor.scala:407)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1408)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:413)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Caused by: org.apache.parquet.io.ParquetDecodingException: Can not read value at 1 in block 0 in file hdfs:/f05ab4fb-cb54-4c37-b924-06968e4df455-c000.snappy.parquet
at org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:223)
at org.apache.parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:213)
at org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:103)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:183)
... 35 more
Caused by: java.lang.ClassCastException: org.apache.spark.sql.catalyst.expressions.MutableAny cannot be cast to org.apache.spark.sql.catalyst.expressions.MutableLong
at org.apache.spark.sql.catalyst.expressions.SpecificInternalRow.setLong(SpecificInternalRow.scala:283)
at org.apache.spark.sql.execution.datasources.parquet.ParquetRowConverter$RowUpdater.setLong(ParquetRowConverter.scala:169)
at org.apache.spark.sql.execution.datasources.parquet.ParquetPrimitiveConverter.addLong(ParquetRowConverter.scala:87)
at org.apache.parquet.column.impl.ColumnReaderImpl$2$4.writeValue(ColumnReaderImpl.java:275)
at org.apache.parquet.column.impl.ColumnReaderImpl.writeCurrentValueToConverter(ColumnReaderImpl.java:372)
at org.apache.parquet.io.RecordReaderImplementation.read(RecordReaderImplementation.java:407)
at org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:198)
... 40 more
Py4JJavaError Traceback (most recent call last)
in engine
----> 1 osm.show(1)
/opt/cloudera/parcels/CDH/lib/spark/python/pyspark/sql/dataframe.py in show(self, n, truncate, vertical)
376 """
377 if isinstance(truncate, bool) and truncate:
--> 378 print(self._jdf.showString(n, 20, vertical))
379 else:
380 print(self._jdf.showString(n, int(truncate), vertical))
/conda/miniconda3/envs/python3.6.8/lib/python3.6/site-packages/py4j/java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
/opt/cloudera/parcels/CDH/lib/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
It can't be a memory problem as with the whole dataframe it works, right? What are the problems?

Issues in .show() in PySpark program

I have the set up for Anaconda, using Jupyter notebook to run my pyspark programs.
Issues are coming whenever I apply functions like join, rank(), I am not able to do a .show() function on the dataframe. for example, for below piece->
windowSpec = Window.partitionBy(func.col("Student_Class")).orderBy(func.col("Student_Marks"))
highDF = studentDF.withColumn('Rank', func.rank().over(windowSpec))
highestStud = highDF.filter(func.col("Rank") == 1).drop("Rank")
highestStud.printSchema()
All the above lines run fine without any issues, but whenever I do a .show(),
it is giving me the below issue.
Py4JJavaError Traceback (most recent call last)
<ipython-input-8-c08a2e669a91> in <module>
----> 1 highestStud.show() #issue coming here while dislaying !!
E:\BigData\spark-2.3.2-bin-hadoop2.7\python\pyspark\sql\dataframe.py in show(self, n, truncate, vertical)
348 """
349 if isinstance(truncate, bool) and truncate:
--> 350 print(self._jdf.showString(n, 20, vertical))
351 else:
352 print(self._jdf.showString(n, int(truncate), vertical))
E:\BigData\spark-2.3.2-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
E:\BigData\spark-2.3.2-bin-hadoop2.7\python\pyspark\sql\utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
E:\BigData\spark-2.3.2-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling o64.showString.
: java.lang.IllegalArgumentException
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.spark.util.ClosureCleaner$.getClassReader(ClosureCleaner.scala:46)
at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:449)
at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:432)
at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733)
at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:230)
at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
at scala.collection.mutable.HashMap$$anon$1.foreach(HashMap.scala:103)
at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732)
at org.apache.spark.util.FieldAccessFinder$$anon$3.visitMethodInsn(ClosureCleaner.scala:432)
at org.apache.xbean.asm5.ClassReader.a(Unknown Source)
at org.apache.xbean.asm5.ClassReader.b(Unknown Source)
at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)
at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)
at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:262)
at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:261)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:261)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:159)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2299)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1.apply(RDD.scala:798)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1.apply(RDD.scala:797)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.mapPartitions(RDD.scala:797)
at org.apache.spark.sql.execution.window.WindowExec.doExecute(WindowExec.scala:302)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:371)
at org.apache.spark.sql.execution.FilterExec.inputRDDs(basicPhysicalOperators.scala:121)
at org.apache.spark.sql.execution.ProjectExec.inputRDDs(basicPhysicalOperators.scala:41)
at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:605)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan.getByteArrayRdd(SparkPlan.scala:247)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:337)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3278)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2489)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2489)
at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3259)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3258)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2489)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2703)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:254)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:564)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.base/java.lang.Thread.run(Thread.java:832)

Error with Collect() in PySpark and Jupyter-notebook

I am learning to code with PySpark and Jupyter-notebook with Python.
In the first example I got an error that I didn't understand.
I have installed Java in the folder C:\ProgramFiles\Java\jdk1.8.0_201. Since I read that Java may produce problem if its installation folder name has spaces, I installed over in the folder mentioned above. The version of Java is 8.
I installed Spark according to: https://mas-dse.github.io/DSE230/installation/windows/#install and configured the different variables https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-tips-and-tricks-running-spark-windows.html
import findspark
findspark.init()
from pyspark import SparkContext
sc = SparkContext(master="local[4]")
A=sc.parallelize(range(3))
L=A.collect()
When the collect() command runs, I get the following errors
Py4JJavaError Traceback (most recent call last)
<ipython-input-5-6b63599b99af> in <module>()
----> 1 L=A.collect()
2 #print(type(L))
3 #print(L)
C:\opt\spark\python\pyspark\rdd.py in collect(self)
814 """
815 with SCCallSiteSync(self.context) as css:
--> 816 sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
817 return list(_load_from_socket(sock_info, self._jrdd_deserializer))
818
C:\opt\spark\python\lib\py4j-0.10.7-src.zip\py4j\java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
C:\opt\spark\python\lib\py4j-0.10.7-src.zip\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 3 in stage 0.0 failed 1 times, most recent failure: Lost task 3.0 in stage 0.0 (TID 3, localhost, executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:135)
at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:409)
at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:199)
at java.net.ServerSocket.implAccept(ServerSocket.java:545)
at java.net.ServerSocket.accept(ServerSocket.java:513)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1887)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1875)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1874)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1874)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2108)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2057)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2046)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2126)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:945)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.collect(RDD.scala:944)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:166)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:135)
at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:409)
at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:199)
at java.net.ServerSocket.implAccept(ServerSocket.java:545)
at java.net.ServerSocket.accept(ServerSocket.java:513)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
After several days looking for a solution to my problem, I found a recommendation in internet to install the previous version of Spark (2.3 instead of 2.4).
I tested it in my computer with windows 10 64bit system, and this worked for me to solve the problem above mentioned.
If you want more details, look at Python worker failed to connect back
Regards,
Diego

Resources