Is there a programming language with parameters in the function name - programming-languages

Often code is not as readable as it could be because parameters are always at the end of the function name. Ex.: addDaysToDate(5, myDate).
I thought about a more readable syntax like this:
function add(days)DaysTo(date) {
// Some implementation
}
var myDate = new Date()
add(5)DaysTo(myDate)
And you could go really crazy:
addA(5)('dollar')CouponTo(order)If(user)IsLoggedIn
So here is my question: Are there any languages that incorporate this concept?

Assuming a generous interpretation of the phrase "is there", then: Algol 60 could look like your example. Specifically, it allowed a form of comment in procedure parameters.
add(5) Days To: (myDate);
The specific rule in the grammar that permits this is:
<parameter delimiter> ::= , | ) <letter string> : (
which is to say, the parameters in a procedure statement can be separated by a comma (as is common) or by an arbitrary sequence of letters delimited by ) and :(.
Spaces are everywhere ignored, so they're ok here too.
The letter-string is treated as a comment, so as for all comments, it has no bearing on what the code actually does. This is just as valid as the previous example:
add(5) Bananas To: (myDate);
It seems curious to me now, nearly 45 years after I last used this, that the comment part can only contain letters, no digits.
<letter string> ::= <letter> | <letter string> <letter>
Revised Report on the Algorithmic Language ALGOL 60

Have a look at Pogoscript https://github.com/featurist/pogoscript
There are no keywords in PogoScript. All control structures use the same syntax rules as regular functions and methods, so it's very easy to write your own control structures
Arguments and parameters can be placed anywhere in the name of a function or method call. The careful placement of an argument or a parameter can give it a lot of meaning.
sing (n) bottlesOfBeerOnTheWall =
if (n > 0)
console.log ((n) bottlesOfBeerOnTheWall)
sing (n - 1) bottlesOfBeerOnTheWall
(n) bottlesOfBeerOnTheWall =
"#((n) bottles) of beer on the wall, #((n) bottles) of beer.\n" +
"Take one down, pass it around, #((n - 1) bottles) of beer on the wall."
(n) bottles =
if (n == 0)
"no bottles"
else if (n == 1)
"1 bottle"
else
"#(n) bottles"
sing 99 bottlesOfBeerOnTheWall

Related

Including comments in AST

I'm planning on writing a Parser for some language. I'm quite confident that I could cobble together a parser in Parsec without too much hassle, but I thought about including comments into the AST so that I could implement a code formatter in the end.
At first, adding an extra parameter to the AST types seemed like a suitable idea (this is basically what was suggested in this answer). For example, instead of having
data Expr = Add Expr Expr | ...
one would have
data Expr a = Add a Expr Expr
and use a for whatever annotation (e.g. for comments that come after the expression).
However, there are some not so exciting cases. The language features C-like comments (// ..., /* .. */) and a simple for loop like this:
for (i in 1:10)
{
... // list of statements
}
Now, excluding the body there are at least 10 places where one could put one (or more) comments:
/*A*/ for /*B*/ ( /*C*/ i /*E*/ in /*F*/ 1 /*G*/ : /*H*/ 10 /*I*/ ) /*J*/
{ /*K*/
...
In other words, while the for loop could previously be comfortably represented as an identifier (i), two expressions (1 & 10) and a list of statements (the body), we would now at least had to include 10 more parameters or records for annotations.
This get ugly and confusing quite quickly, so I wondered whether there is a clear better way to handle this. I'm certainly not the first person wanting to write a code formatter that preserves comments, so there must be a decent solution or is writing a formatter just that messy?
You can probably capture most of those positions with just two generic comment productions:
Expr -> Comment Expr
Stmt -> Comment Stmt
This seems like it ought to capture comments A, C, F, H, J, and K for sure; possibly also G depending on exactly what your grammar looks like. That only leaves three spots to handle in the for production (maybe four, with one hidden in Range here):
Stmt -> "for" Comment "(" Expr Comment "in" Range Comment ")" Stmt
In other words: one before each literal string but the first. Seems not too onerous, ultimately.

Statements vs Expressions in Haskell, Ocaml, Javascript

In Haskell, afaik, there are no statements, just expressions. That is, unlike in an imperative language like Javascript, you cannot simply execute code line after line, i.e.
let a = 1
let b = 2
let c = a + b
print(c)
Instead, everything is an expression and nothing can simply modify state and return nothing (i.e. a statement). On top of that, everything would be wrapped in a function such that, in order to mimic such an action as above, you'd use the monadic do syntax and thereby hide the underlying nested functions.
Is this the same in OCAML/F# or can you just have imperative statements?
This is a bit of a complicated topic. Technically, in ML-style languages, everything is an expression. However, there is some syntactic sugar to make it read more like statements. For example, the sample you gave in F# would be:
let a = 1
let b = 2
let c = a + b
printfn "%d" c
However, the compiler silently turns those "statements" into the following expression for you:
let a = 1 in
let b = 2 in
let c = a + b in
printfn "%d" c
Now, the last line here is going to do IO, and unlike in Haskell, it won't change the type of the expression to IO. The type of the expression here is unit. unit is the F# way of expressing "this function doesn't really have result" in the type system. Of course, if the function doesn't have a result, in a purely functional language it would be pointless to call it. The only reason to call it would be for some side-effect, and since Haskell doesn't allow side-effects, they use the IO monad to encode the fact the function has an IO producing side-effect into the type system.
F# and other ML-based languages do allow side-effects like IO, so they have the unit type to represent functions that only do side-effects, like printing. When designing your application, you will generally want to avoid having unit-returning functions except for things like logging or printing. If you feel so inclined, you can even use F#'s moand-ish feature, Computation Expressions, to encapsulate your side-effects for you.
Not to be picky, but there's no language OCaml/F# :-)
To answer for OCaml: OCaml is not a pure functional language. It supports side effects directly through mutability, I/O, and exceptions. In many cases it treats such constructs as expressions with the value (), the single value of type unit.
Expressions of type unit can appear in a sequence separated by ;:
let s = ref 0 in
while !s < 10 do
Printf.printf "%d\n" !s; (* This has type unit *)
incr s (* This has type unit *)
done (* The while as a whole has type unit *)
Update
More specifically, ; ignores the value of the first expression and returns the value of the second expression. The first expression should have type unit but this isn't absolutely required.
# print_endline "hello"; 44 ;;
hello
- : int = 44
# 43 ; 44 ;;
Warning 10: this expression should have type unit.
- : int = 44
The ; operator is right associative, so you can write a ;-separated sequence of expressions without extra parentheses. It has the value of the last (rightmost) expression.
To answer the question we need to define what is an expression and what is a statement.
Distinction between expressions and statements
In layman terms, an expression is something that evaluates (reduces) to a value. It is basically something, that may occur on the right-hand side of the assignment operator. Contrary, a statement is some directive that doesn't produce directly a value.
For example, in Python, the ternary operator builds expressions, e.g.,
'odd' if x % 2 else 'even'
is an expression, so you can assign it to a variable, print, etc
While the following is a statement:
if x % 2:
'odd'
else:
'even'
It is not reduced to a value by Python, it couldn't be printed, assigned to a value, etc.
So far we were focusing more on the semantical differences between expressions and statements. But for a casual user, they are more noticeable on the syntactic level. I.e., there are places where a statement is expected and places where expressions are expected. For example, you can put a statement to the right of the assignment operator.
OCaml/Reason/Haskell/F# story
In OCaml, Reason, and F# such constructs as if, while, print etc are expressions. They all evaluate to values and can occur on the right-hand side of the assignment operator. So it looks like that there is no distinction between statements and expressions. Indeed, there are no statements in OCaml grammar at all. I believe, that F# and Reason are also not using word statement to exclude confusion. However, there are syntactic forms that are not expressions, for example:
open Core_kernel
it is not an expression, definitely, and
type students = student list
is not an expression.
So what is that? In the OCaml parlance, they are called definitions, and they are syntactic constructs that can appear in the module on the, so called, top-level. For example, in OCaml, there are value definitions, that look like this
let harry = student "Harry"
let larry = student "Larry"
let group = [harry; larry]
Every line above is a definition. And every line contains an expression on the right-hand side of the = symbol. In OCaml there is also a let expression, that has form let <v> = <exp> in <exp> that should not be confused with the top-level let definition.
Roughly the same is true for F# and Reason. It is also true for Haskell, that has a distinction between expressions and declarations. It actually should be true to probably every real-world language (i.e., excluding brainfuck and other toy languages).
Summary
So, all these languages have syntactic forms that are not expressions. They are not called statements per se, but we can treat them as statements. So there is a distinction between statements and expressions. The main difference from common imperative languages is that some well-known statements (e.g., if, while, for) are expressions in OCaml/F#/Reason/Haskell, and this is why people commonly say that there is no distinction between expressions and statements.

Haskell: How to delete the same function and concatenate two lists

I am the beginner of haskell. I want to delete some same functions in the same list and concatenate the two list get together.
For example:
db1 = ["David","worksfor.isa", "IBM" ]
db2 = ["David","isa'.worksfor'", "IBM"]
db3 = ["Tom","worksfor.isa", "IBM" ]
the program can be known that "isa'.worksfor' and "worksfor.isa" is the same String. And then use "Concat" to get the new db: db1 =["David","worksfor.isa", "IBM" ] and the others: db3 = ["Tom","worksfor.isa", "IBM" ]
(map (\(a,b,c) -> concat (map(\(a',b',c') -> if ( a b == b' a') then [] else [(a,b ++ "." ++ b',c')])))) ??????
I want to "split the string, if there are ' characters, reverse it, then remove ' characters and check for equivalence"
This should be a comment, but it is far too long:
I assume you find it hard to express yourself in English. I can relate to that; I find it hard myself. However, beyond English there are two other ways to communicate here:
Using precise technical terms.
Using several, diverse examples. A single example will not suffice, and several examples which are too similar give little information.
As for option 1, you are using the wrong terminology. It is not easy for me to see how can a list with 3 items can be considered a database (as hinted by the names db1, db2). Perhaps you wanted to use a list of triples?
[ ("David","isa'.worksfor'", "IBM") ]
You are not specific about what exactly do you want to concatenate, but the term concatenation always refers to an operation that must be "additive", i.e. length(x ++ y) == length(x) ++ length(y). This does not seem to be the case in your question.
Do you want a union of two databases (lists of triples) up to equivalence?
You want the program to understand that
"isa'.worksfor'" and "worksfor.isa" are the same string
But they are not. They might be equivalent strings. You can generally do that using a map operation, like you tried, but you should note that the character ' is not an operation over strings. So a b == b' a' does nothing close to what you want - it calls the function a on the variable b, and compares this with calling the function b' over the variable a'. I can only assume you want something like "split the string, if there are ' characters, reverse it, then remove ' characters and check for equivalence" but this is completely a guesswork.
To conclude:
Please explain in detail what is the general problem you are trying to solve. Try to find the precise terms; it is difficult, but this way you can learn.
Please add different examples of input and output
Please try to explain what have you tried and where are you stuck
As a last tip, maybe you want to solve this problem in a more forgiving language than Haskell (such as JavaScript, Python, Ruby, etc.)

Correct way to define a function in Haskell

I'm new to Haskell and I'm trying out a few tutorials.
I wrote this script:
lucky::(Integral a)=> a-> String
lucky 7 = "LUCKY NUMBER 7"
lucky x = "Bad luck"
I saved this as lucky.hs and ran it in the interpreter and it works fine.
But I am unsure about function definitions. It seems from the little I have read that I could equally define the function lucky as follows (function name is lucky2):
lucky2::(Integral a)=> a-> String
lucky2 x=(if x== 7 then "LUCKY NUMBER 7" else "Bad luck")
Both seem to work equally well. Clearly function lucky is clearer to read but is the lucky2 a correct way to write a function?
They are both correct. Arguably, the first one is more idiomatic Haskell because it uses its very important feature called pattern matching. In this form, it would usually be written as:
lucky::(Integral a)=> a-> String
lucky 7 = "LUCKY NUMBER 7"
lucky _ = "Bad luck"
The underscore signifies the fact that you are ignoring the exact form (value) of your parameter. You only care that it is different than 7, which was the pattern captured by your previous declaration.
The importance of pattern matching is best illustrated by function that operates on more complicated data, such as lists. If you were to write a function that computes a length of list, for example, you would likely start by providing a variant for empty lists:
len [] = 0
The [] clause is a pattern, which is set to match empty lists. Empty lists obviously have length of 0, so that's what we are having our function return.
The other part of len would be the following:
len (x:xs) = 1 + len xs
Here, you are matching on the pattern (x:xs). Colon : is the so-called cons operator: it is appending a value to list. An expression x:xs is therefore a pattern which matches some element (x) being appended to some list (xs). As a whole, it matches a list which has at least one element, since xs can also be an empty list ([]).
This second definition of len is also pretty straightforward. You compute the length of remaining list (len xs) and at 1 to it, which corresponds to the first element (x).
(The usual way to write the above definition would be:
len (_:xs) = 1 + len xs
which again signifies that you do not care what the first element is, only that it exists).
A 3rd way to write this would be using guards:
lucky n
| n == 7 = "lucky"
| otherwise = "unlucky"
There is no reason to be confused about that. There is always more than 1 way to do it. Note that this would be true even if there were no pattern matching or guards and you had to use the if.
All of the forms we've covered so far use so-called syntactic sugar provided by Haskell. Pattern guards are transformed to ordinary case expressions, as well as multiple function clauses and if expressions. Hence the most low-level, unsugared way to write this would be perhaps:
lucky n = case n of
7 -> "lucky"
_ -> "unlucky"
While it is good that you check for idiomatic ways I'd recommend to a beginner that he uses whatever works for him best, whatever he understands best. For example, if one does (not yet) understand points free style, there is no reason to force it. It will come to you sooner or later.

To ternary or not to ternary? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I'm personally an advocate of the ternary operator: () ? :
I do realize that it has its place, but I have come across many programmers that are completely against ever using it, and some that use it too often.
What are your feelings on it? What interesting code have you seen using it?
Use it for simple expressions only:
int a = (b > 10) ? c : d;
Don't chain or nest ternary operators as it hard to read and confusing:
int a = b > 10 ? c < 20 ? 50 : 80 : e == 2 ? 4 : 8;
Moreover, when using ternary operator, consider formatting the code in a way that improves readability:
int a = (b > 10) ? some_value
: another_value;
It makes debugging slightly more difficult since you can not place breakpoints on each of the sub expressions. I use it rarely.
I love them, especially in type-safe languages.
I don't see how this:
int count = (condition) ? 1 : 0;
is any harder than this:
int count;
if (condition)
{
count = 1;
}
else
{
count = 0;
}
I'd argue that ternary operators make everything less complex and more neat than the alternative.
Chained I'm fine with - nested, not so much.
I tend to use them more in C simply because they're an if statement that has value, so it cuts down on unnecessary repetition or variables:
x = (y < 100) ? "dog" :
(y < 150) ? "cat" :
(y < 300) ? "bar" : "baz";
rather than
if (y < 100) { x = "dog"; }
else if (y < 150) { x = "cat"; }
else if (y < 300) { x = "bar"; }
else { x = "baz"; }
In assignments like this, I find it's less to refactor, and clearer.
When I'm working in ruby on the other hand, I'm more likely to use if...else...end because it's an expression too.
x = if (y < 100) then "dog"
elif (y < 150) then "cat"
elif (y < 300) then "bar"
else "baz"
end
(Although, admittedly, for something this simple, I might just use the ternary operator anyway.)
The ternary ?: operator is merely a functional equivalent of the procedural if construct. So as long as you are not using nested ?: expressions, the arguments for/against the functional representation of any operation applies here. But nesting ternary operations can result in code that is downright confusing (exercise for the reader: try writing a parser that will handle nested ternary conditionals and you will appreciate their complexity).
But there are plenty of situations where conservative use of the ?: operator can result in code that is actually easier to read than otherwise. For example:
int compareTo(Object object) {
if((isLessThan(object) && reverseOrder) || (isGreaterThan(object) && !reverseOrder)) {
return 1;
if((isLessThan(object) && !reverseOrder) || (isGreaterThan(object) && reverseOrder)) {
return -1;
else
return 0;
}
Now compare that with this:
int compareTo(Object object) {
if(isLessThan(object))
return reverseOrder ? 1 : -1;
else(isGreaterThan(object))
return reverseOrder ? -1 : 1;
else
return 0;
}
As the code is more compact, there is less syntactic noise, and by using the ternary operator judiciously (that is only in relation with the reverseOrder property) the end result isn't particularly terse.
It's a question of style, really; the subconscious rules I tend to follow are:
Only evaluate 1 expression - so foo = (bar > baz) ? true : false, but NOT foo = (bar > baz && lotto && someArray.Contains(someValue)) ? true : false
If I'm using it for display logic, e.g. <%= (foo) ? "Yes" : "No" %>
Only really use it for assignment; never flow logic (so never (foo) ? FooIsTrue(foo) : FooIsALie(foo) ) Flow logic in ternary is itself a lie, ignore that last point.
I like it because it's concise and elegant for simple assignment operations.
Like so many opinion questions, the answer is inevitably: it depends
For something like:
return x ? "Yes" : "No";
I think that is much more concise (and quicker for me to parse) than:
if (x) {
return "Yes";
} else {
return "No";
}
Now if your conditional expression is complex, then the ternary operation is not a good choice. Something like:
x && y && z >= 10 && s.Length == 0 || !foo
is not a good candidate for the ternary operator.
As an aside, if you are a C programmer, GCC actually has an extension that allows you to exclude the if-true portion of the ternary, like this:
/* 'y' is a char * */
const char *x = y ? : "Not set";
Which will set x to y assuming y is not NULL. Good stuff.
In my mind, it only makes sense to use the ternary operator in cases where an expression is needed.
In other cases, it seems like the ternary operator decreases clarity.
I use the ternary operator wherever I can, unless it makes the code extremely hard to read, but then that's usually just an indication that my code could use a little refactoring.
It always puzzles me how some people think the ternary operator is a "hidden" feature or is somewhat mysterious. It's one of the first things I learnt when I start programming in C, and I don't think it decreases readability at all. It's a natural part of the language.
By the measure of cyclomatic complexity, the use of if statements or the ternary operator are equivalent. So by that measure, the answer is no, the complexity would be exactly the same as before.
By other measures such as readability, maintainability, and DRY (don't repeat yourself), either choice may prove better than the other.
I use it quite often in places where I'm constrained to work in a constructor - for example, the new .NET 3.5 LINQ to XML constructs - to define default values when an optional parameter is null.
Contrived example:
var e = new XElement("Something",
param == null ? new XElement("Value", "Default")
: new XElement("Value", param.ToString())
);
or (thanks asterite)
var e = new XElement("Something",
new XElement("Value",
param == null ? "Default"
: param.ToString()
)
);
No matter whether you use the ternary operator or not, making sure your code is readable is the important thing. Any construct can be made unreadable.
I agree with jmulder: it shouldn't be used in place of a if, but it has its place for return expression or inside an expression:
echo "Result: " + n + " meter" + (n != 1 ? "s" : "");
return a == null ? "null" : a;
The former is just an example, and better internationalisation and localisation support of plural should be used!
If you're using the ternary operator for a simple conditional assignment I think it's fine. I've seen it (ab)used to control program flow without even making an assignment, and I think that should be avoided. Use an if statement in these cases.
(Hack of the day)
#define IF(x) x ?
#define ELSE :
Then you can do if-then-else as expression:
int b = IF(condition1) res1
ELSE IF(condition2) res2
ELSE IF(conditions3) res3
ELSE res4;
I think the ternary operator should be used when needed. It is obviously a very subjective choice, but I find that a simple expression (specially as a return expression) is much clearer than a full test. Example in C/C++:
return (a>0)?a:0;
Compared to:
if(a>0) return a;
else return 0;
You also have the case where the solution is between the ternary operator and creating a function. For example in Python:
l = [ i if i > 0 else 0 for i in lst ]
The alternative is:
def cap(value):
if value > 0:
return value
return 0
l = [ cap(i) for i in lst ]
It is needed enough that in Python (as an example), such an idiom could be seen regularly:
l = [ ((i>0 and [i]) or [0])[0] for i in lst ]
this line uses properties of the logical operators in Python: they are lazy and returns the last value computed if it is equal to the final state.
I've seen such beasts like (it was actually much worse since it was isValidDate and checked month and day as well, but I couldn't be bothered trying to remember the whole thing):
isLeapYear =
((yyyy % 400) == 0)
? 1
: ((yyyy % 100) == 0)
? 0
: ((yyyy % 4) == 0)
? 1
: 0;
where, plainly, a series of if-statements would have been better (although this one's still better than the macro version I once saw).
I don't mind it for small things like:
reportedAge = (isFemale && (Age >= 21)) ? 21 + (Age - 21) / 3 : Age;
or even slightly tricky things like:
printf ("Deleted %d file%s\n", n, (n == 1) ? "" : "s");
I like using the operator in debug code to print error values so I don't have to look them up all the time. Usually I do this for debug prints that aren't going to remain once I'm done developing.
int result = do_something();
if( result != 0 )
{
debug_printf("Error while doing something, code %x (%s)\n", result,
result == 7 ? "ERROR_YES" :
result == 8 ? "ERROR_NO" :
result == 9 ? "ERROR_FILE_NOT_FOUND" :
"Unknown");
}
I almost never use the ternary operator, because whenever I do use it, it always makes me think a lot more than I have to later when I try to maintain it.
I like to avoid verbosity, but when it makes the code a lot easier to pick up, I will go for the verbosity.
Consider:
String name = firstName;
if (middleName != null) {
name += " " + middleName;
}
name += " " + lastName;
Now, that is a bit verbose, but I find it a lot more readable than:
String name = firstName + (middleName == null ? "" : " " + middleName)
+ " " + lastName;
Or:
String name = firstName;
name += (middleName == null ? "" : " " + middleName);
name += " " + lastName;
It just seems to compress too much information into too little space, without making it clear what's going on. Every time I saw the ternary operator used, I have always found an alternative that seemed much easier to read... then again, that is an extremely subjective opinion, so if you and your colleagues find ternary very readable, go for it.
I like them. I don't know why, but I feel very cool when I use the ternary expression.
I treat ternary operators a lot like GOTO. They have their place, but they are something which you should usually avoid to make the code easier to understand.
Well, the syntax for it is horrid. I find functional ifs very useful, and they often makes code more readable.
I would suggest making a macro to make it more readable, but I'm sure someone can come up with a horrible edge case (as there always is with C++).
I typically use it in things like this:
before:
if(isheader)
drawtext(x, y, WHITE, string);
else
drawtext(x, y, BLUE, string);
after:
drawtext(x, y, isheader == true ? WHITE : BLUE, string);
As others have pointed out they are nice for short simple conditions. I especially like them for defaults (kind of like the || and or usage in JavaScript and Python), e.g.
int repCount = pRepCountIn ? *pRepCountIn : defaultRepCount;
Another common use is to initialize a reference in C++. Since references have to be declared and initialized in the same statement you can't use an if statement.
SomeType& ref = pInput ? *pInput : somethingElse;
I like Groovy's special case of the ternary operator, called the Elvis operator: ?:
expr ?: default
This code evaluates to expr if it's not null, and default if it is. Technically it's not really a ternary operator, but it's definitely related to it and saves a lot of time/typing.
I recently saw a variation on ternary operators (well, sort of) that make the standard "() ? :" variant seem to be a paragon of clarity:
var Result = [CaseIfFalse, CaseIfTrue][(boolean expression)]
or, to give a more tangible example:
var Name = ['Jane', 'John'][Gender == 'm'];
Mind you, this is JavaScript, so things like that might not be possible in other languages (thankfully).
Only when:
$var = (simple > test ? simple_result_1 : simple_result_2);
KISS.
For simple if cases, I like to use it. Actually it's much easier to read/code for instance as parameters for functions or things like that. Also to avoid the new line I like to keep with all my if/else.
Nesting it would be a big no-no in my book.
So, resuming, for a single if/else I'll use the ternary operator. For other cases, a regular if/else if/else (or switch).
For simple tasks, like assigning a different value depending on a condition, they're great. I wouldn't use them when there are longer expressions depending on the condition though.
If you and your workmates understand what they do and they aren't created in massive groups I think they make the code less complex and easier to read because there is simply less code.
The only time I think ternary operators make code harder to understand is when you have more than three or foyr in one line. Most people don't remember that they are right based precedence and when you have a stack of them it makes reading the code a nightmare.
As so many answers have said, it depends. I find that if the ternary comparison is not visible in a quick scan down the code, then it should not be used.
As a side issue, I might also note that its very existence is actually a bit of an anomaly due to the fact that in C, comparison testing is a statement. In Icon, the if construct (like most of Icon) is actually an expression. So you can do things like:
x[if y > 5 then 5 else y] := "Y"
... which I find much more readable than a ternary comparison operator. :-)
There was a discussion recently about the possibility of adding the ?: operator to Icon, but several people correctly pointed out that there was absolutely no need because of the way if works.
Which means that if you could do that in C (or any of the other languages that have the ternary operator), then you wouldn't, in fact, need the ternary operator at all.

Resources