a - O(n^(log_3 4))
b - Theta(n log n)
c - Theta(n^2).
d - O(n)
e - Theta(n^(log_4 3))
Essentially your problem is a recurrence relationship like this;
T(n) = 5*T(n/3) + Theta(n^2)
You can use what is called the Master Theorem
to get an answer for this.
Your parameters are: a:=3 b:=5 and f(n):=n^2. I'm sure from here you can solve your question and get your answer.
Related
Kindly help me write a simple python program that takes the two roots of a quadratics equation as functions and returns the complete quadratics equation..Sort of reversing the quadratics equation
So, you're given two roots, let's call them a and b.
The math is as follows:
y = (x - a)(x - b)
y = x^2 - (a + b)x + ab
(Note that the right side of the equation can be multiplied by an arbitrary number. There is no way to determine what that number is with the given information.)
Try implementing that and come back here with any questions related to your own code.
I'm talking about the problem of calculating the n-th fibonacci number.
Some users here say that it is in fact a DP problem, (please see the first answer to this question and the comments of the same answer What is dynamic programming?) but others say that it isn't because it doesn't optimize anything and because of other reasons, so is it or not?
From Wikipedia page of dynamic programming,
var m := map(0 → 0, 1 → 1)
function fib(n)
if key n is not in map m
m[n] := fib(n − 1) + fib(n − 2)
return m[n]
This technique of saving values that have already been calculated is called memoization; this is
the top-down approach, since we first break the problem into subproblems and then calculate and
store values.
So, it's one of the techniques used to get the Nth number in the sequence.
EDIT - For the added question, memoization is a form of DP.
Local alignment between X and Y, with at least one column aligning a C
to a W.
Given two sequences X of length n and Y of length m, we
are looking for a highest-scoring local alignment (i.e., an alignment
between a substring X' of X and a substring Y' of Y) that has at least
one column in which a C from X' is aligned to a W from Y' (if such an
alignment exists). As scoring model, we use a substitution matrix s
and linear gap penalties with parameter d.
Write a code in order to solve the problem efficiently. If you use dynamic
programming, it suffices to give the equations for computing the
entries in the dynamic programming matrices, and to specify where
traceback starts and ends.
My Solution:
I've taken 2 sequences namely, "HCEA" and "HWEA" and tried to solve the question.
Here is my code. Have I fulfilled what is asked in the question? If am wrong kindly tell me where I've gone wrong so that I will modify my code.
Also is there any other way to solve the question? If its available can anyone post a pseudo code or algorithm, so that I'll be able to code for it.
public class Q1 {
public static void main(String[] args) {
// Input Protein Sequences
String seq1 = "HCEA";
String seq2 = "HWEA";
// Array to store the score
int[][] T = new int[seq1.length() + 1][seq2.length() + 1];
// initialize seq1
for (int i = 0; i <= seq1.length(); i++) {
T[i][0] = i;
}
// Initialize seq2
for (int i = 0; i <= seq2.length(); i++) {
T[0][i] = i;
}
// Compute the matrix score
for (int i = 1; i <= seq1.length(); i++) {
for (int j = 1; j <= seq2.length(); j++) {
if ((seq1.charAt(i - 1) == seq2.charAt(j - 1))
|| (seq1.charAt(i - 1) == 'C') && (seq2.charAt(j - 1) == 'W')) {
T[i][j] = T[i - 1][j - 1];
} else {
T[i][j] = Math.min(T[i - 1][j], T[i][j - 1]) + 1;
}
}
}
// Strings to store the aligned sequences
StringBuilder alignedSeq1 = new StringBuilder();
StringBuilder alignedSeq2 = new StringBuilder();
// Build for sequences 1 & 2 from the matrix score
for (int i = seq1.length(), j = seq2.length(); i > 0 || j > 0;) {
if (i > 0 && T[i][j] == T[i - 1][j] + 1) {
alignedSeq1.append(seq1.charAt(--i));
alignedSeq2.append("-");
} else if (j > 0 && T[i][j] == T[i][j - 1] + 1) {
alignedSeq2.append(seq2.charAt(--j));
alignedSeq1.append("-");
} else if (i > 0 && j > 0 && T[i][j] == T[i - 1][j - 1]) {
alignedSeq1.append(seq1.charAt(--i));
alignedSeq2.append(seq2.charAt(--j));
}
}
// Display the aligned sequence
System.out.println(alignedSeq1.reverse().toString());
System.out.println(alignedSeq2.reverse().toString());
}
}
#Shole
The following are the two question and answers provided in my solved worksheet.
Aligning a suffix of X to a prefix of Y
Given two sequences X and Y, we are looking for a highest-scoring alignment between any suffix of X and any prefix of Y. As a scoring model, we use a substitution matrix s and linear gap penalties with parameter d.
Give an efficient algorithm to solve this problem optimally in time O(nm), where n is the length of X and m is the length of Y. If you use a dynamic programming approach, it suffices to give the equations that are needed to compute the dynamic programming matrix, to explain what information is stored for the traceback, and to state where the traceback starts and ends.
Solution:
Let X_i be the prefix of X of length i, and let Y_j denote the prefix of Y of length j. We compute a matrix F such that F[i][j] is the best score of an alignment of any suffix of X_i and the string Y_j. We also compute a traceback matrix P. The computation of F and P can be done in O(nm) time using the following equations:
F[0][0]=0
for i = 1..n: F[i][0]=0
for j = 1..m: F[0][j]=-j*d, P[0][j]=L
for i = 1..n, j = 1..m:
F[i][j] = max{ F[i-1][j-1]+s(X[i-1],Y[j-1]), F[i-1][j]-d, F[i][j-1]-d }
P[i][j] = D, T or L according to which of the three expressions above is the maximum
Once we have computed F and P, we find the largest value in the bottom row of the matrix F. Let F[n][j0] be that largest value. We start traceback at F[n][j0] and continue traceback until we hit the first column of the matrix. The alignment constructed in this way is the solution.
Aligning Y to a substring of X, without gaps in Y
Given a string X of length n and a string Y of length m, we want to compute a highest-scoring alignment of Y to any substring of X, with the extra constraint that we are not allowed to insert any gaps into Y. In other words, the output is an alignment of a substring X' of X with the string Y, such that the score of the alignment is the largest possible (among all choices of X') and such that the alignment does not introduce any gaps into Y (but may introduce gaps into X'). As a scoring model, we use again a substitution matrix s and linear gap penalties with parameter d.
Give an efficient dynamic programming algorithm that solves this problem optimally in polynomial time. It suffices to give the equations that are needed to compute the dynamic programming matrix, to explain what information is stored for the traceback, and to state where the traceback starts and ends. What is the running-time of your algorithm?
Solution:
Let X_i be the prefix of X of length i, and let Y_j denote the prefix of Y of length j. We compute a matrix F such that F[i][j] is the best score of an alignment of any suffix of X_i and the string Y_j, such that the alignment does not insert gaps in Y. We also compute a traceback matrix P. The computation of F and P can be done in O(nm) time using the following equations:
F[0][0]=0
for i = 1..n: F[i][0]=0
for j = 1..m: F[0][j]=-j*d, P[0][j]=L
for i = 1..n, j = 1..m:
F[i][j] = max{ F[i-1][j-1]+s(X[i-1],Y[j-1]), F[i][j-1]-d }
P[i][j] = D or L according to which of the two expressions above is the maximum
Once we have computed F and P, we find the largest value in the rightmost column of the matrix F. Let F[i0][m] be that largest value. We start traceback at F[i0][m] and continue traceback until we hit the first column of the matrix. The alignment constructed in this way is the solution.
Hope you get some idea about wot i really need.
I think it's quite easy to find resources or even the answer by google...as the first result of the searching is already a thorough DP solution.
However, I appreciate that you would like to think over the solution by yourself and are requesting some hints.
Before I give out some of the hints, I would like to say something about designing a DP solution
(I assume you know this can be solved by a DP solution)
A dp solution basically consisting of four parts:
1. DP state, you have to self define the physical meaning of one state, eg:
a[i] := the money the i-th person have;
a[i][j] := the number of TV programmes between time i and time j; etc
2. Transition equations
3. Initial state / base case
4. how to query the answer, eg: is the answer a[n]? or is the answer max(a[i])?
Just some 2 cents on a DP solution, let's go back to the question :)
Here's are some hints I am able to think of:
What is the dp state? How many dimensions are enough to define such a state?
Thinking of you are solving problems much alike to common substring problem (on 2 strings),
1-dimension seems too little and 3-dimensions seems too many right?
As mentioned in point 1, this problem is very similar to common substring problem, maybe you should have a look on these problems to get yourself some idea?
LCS, LIS, Edit Distance, etc.
Supplement part: not directly related to the OP
DP is easy to learn, but hard to master. I know a very little about it, really cannot share much. I think "Introduction to algorithm" is a quite standard book to start with, you can find many resources, especially some ppt/ pdf tutorials of some colleges / universities to learn some basic examples of DP.(Learn these examples is useful and I'll explain below)
A problem can be solved by many different DP solutions, some of them are much better (less time / space complexity) due to a well-defined DP state.
So how to design a better DP state or even get the sense that one problem can be solved by DP? I would say it's a matter of experiences and knowledge. There are a set of "well-known" DP problems which I would say many other DP problems can be solved by modifying a bit of them. Here is a post I just got accepted about another DP problem, as stated in that post, that problem is very similar to a "well-known" problem named "matrix chain multiplication". So, you cannot do much about the "experience" part as it has no express way, yet you can work on the "knowledge" part by studying these standard DP problems first maybe?
Lastly, let's go back to your original question to illustrate my point of view:
As I knew LCS problem before, I have a sense that for similar problem, I may be able to solve it by designing similar DP state and transition equation? The state s(i,j):= The optimal cost for A(1..i) and B(1..j), given two strings A & B
What is "optimal" depends on the question, and how to achieve this "optimal" value in each state is done by the transition equation.
With this state defined, it's easy to see the final answer I would like to query is simply s(len(A), len(B)).
Base case? s(0,0) = 0 ! We can't really do much on two empty string right?
So with the knowledge I got, I have a rough thought on the 4 main components of designing a DP solution. I know it's a bit long but I hope it helps, cheers.
I have a class implementing an audio stream that can be read at varying speed (including reverse and fast varying / "scratching")... I use linear interpolation for the read part and everything works quite decently..
But now I want to implement writing to the stream at varying speed as well and that requires me to implement a kind of "reverse interpolation" i.e. Deduce the input sample vector Z that, interpolated with vector Y will produce the output X (which I'm trying to write)..
I've managed to do it for constant speeds, but generalising for varying speeds (e.g accelerating or decelerating) is proving more complicated..
I imagine this problem has been solved repeatedly, but I can't seem to find many clues online, so my specific question is if anyone has heard of this problem and can point me in the right direction (or, even better, show me a solution :)
Thanks!
I would not call it "reverse interpolation" as that does not exists (my first thought was you were talking about extrapolation!). What you are doing is still simply interpolation, just at an uneven rate.
Interpolation: finding a value between known values
Extrapolation: finding a value beyond known values
Interpolating to/from constant rates is indeed much much simpler than the generic quest of "finding a value between known values". I propose 2 solutions.
1) Interpolate to a significantly higher rate, and then just sub-sample to the nearest one (try adding dithering)
2) Solve the generic problem: for each point you need to use the neighboring N points and fit a order N-1 polynomial to them.
N=2 would be linear and would add overtones (C0 continuity)
N=3 could leave you with step changes at the halfway point between your source samples (perhaps worse overtones than N=2!)
N=4 will get you C1 continuity (slope will match as you change to the next sample), surely enough for your application.
Let me explain that last one.
For each output sample use the 2 previous and 2 following input samples. Call them S0 to S3 on a unit time scale (multiply by your sample period later), and you are interpolating from time 0 to 1. Y is your output and Y' is the slope.
Y will be calculated from this polynomial and its differential (slope)
Y(t) = At^3 + Bt^2 + Ct + D
Y'(t) = 3At^2 + 2Bt + C
The constraints (the values and slope at the endpoints on either side)
Y(0) = S1
Y'(0) = (S2-S0)/2
Y(1) = S2
Y'(1) = (S3-S1)/2
Expanding the polynomial
Y(0) = D
Y'(0) = C
Y(1) = A+B+C+D
Y'(1) = 3A+2B+C
Plugging in the Samples
D = S1
C = (S2-S0)/2
A + B = S2 - C - D
3A+2B = (S3-S1)/2 - C
The last 2 are a system of equations that are easily solvable. Subtract 2x the first from the second.
3A+2B - 2(A+B)= (S3-S1)/2 - C - 2(S2 - C - D)
A = (S3-S1)/2 + C - 2(S2 - D)
Then B is
B = S2 - A - C - D
Once you have A, B, C and D you can put in an time 't' in the polynomial to find a sample value between your known samples.
Repeat for every output sample, reuse A,B,C&D if the next output sample is still between the same 2 input samples. Calculating t each time is similar to Bresenham's line algorithm, you're just advancing by a different amount each time.
Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 9 years ago.
Improve this question
I need to write a reliable method to retrieve the answer to the following scenario...
Given a line segment AB and an arbitrary point C, how would I find the closest point to A on a line parallel to AB that passes through point C? (Reliable mentioned above refers to the algorithms ability to find D while allowing the coordinates for A, B, and C to be completely arbitrary and unpredictable. I've ran in to a quite a few solutions that I was not able to adapt to all possible scenarios, sadly...)
In the case of the data displayed in the picture below, how would I reliably find the x,y coordinates of D?
A = <425, 473>
B = <584, 533>
C = <371, 401>
D = <???, ???>
Knowing that AB and CD are parallel, that obviously means the slopes are the same.
I have tried many different formulas to no avail and have been working on this for weeks now. I'm stumped!
It's a minimization problem.
In general, the Euclidean distance between two points (A and B) in N dimensional space is given by
Dist(A,B) = sqrt((A1-B1)^2 + ... + (AN-BN)^2)
If you need to find the minimum distance between a space curve A(t) (a 1-dimensional object embedded in some N dimensional space) and a point B, then you need to solve this equation:
d Dist(A(t),B) / dt = 0 // (this is straightforward calculus: we're at either a minimum or maximum when the rate of change is 0)
and test that set of roots (t1, t2, etc) against the distance function to find which one yields the smallest value of D.
Now to find the equation for the parallel line passing through C in y=mx+b form:
m = (Ay - By)/(Ax-Bx)
b = Cy - mCx
Let's write this in space-curve form as and plug it into our formula from part 1:
Dist(D(t),A) = sqrt((t-Ax)^2 + (m*t+b-Ay)^2)
taking our derivative:
d Dist(D(t),A)/ dt = d sqrt((t-Ax)^2 + (m*t+b-Ay)^2) / dt
= (t + (m^2)*t - Ax + m*b - m*Ay)/sqrt(t^2 + (m^2)t^2 - 2*t*Ax + 2*m*t*b - 2*m*t*Ay + (Ax)^2 + (Ay)^2 + b^2 - 2*b*Ay )
= ((1+m^2)*t - Ax + m*b - m*Ay)/sqrt((1+m^2)*(t^2) + 2*t*(m*b - Ax - m*Ay) + (Ax)^2 + (Ay)^2 + b^2 - 2*b*Ay )
Settings this equal to 0 and solving for t yields:
t = (Ax-m*b+m*Ay)/(1+m^2)
as the only root (you can check this for yourself by substituting back in and verifying that everything cancels as desired).
Plugging this value of t back in to our space curve yields the following:
D=<(Ax-m*b+m*Ay)/(1+m^2),b+m*(Ax-m*b+m*Ay)/(1+m^2)>
You can then plug in your expressions for m and b if you want an explicit solution in terms A,B,C, or if you only want the numerical solution you can just compute it as a three step process:
m = (Ay - By)/(Ax-Bx)
b = Cy - mCx
D=<(Ax-m*b+m*Ay)/(1+m^2),b+m*(Ax-m*b+m*Ay)/(1+m^2)>
This will be valid for all cases with parallel straight lines. One caveat when implementing it as a numerical (rather than analytical) code: if the lines are oriented vertically, calculating m = (Ay-By)/(Ax-Bx) will result in division by 0, which will make your code not work. You can throw in a safety valve as follows:
if( Ax == Bx) {
D = <Cx,Ay>
} else {
// normal calculation here
}
For serious numerical work, you probably want to implement that in terms of tolerances rather than a direct comparison due to roundoff errors and all that fun stuff (i.e., abs(Ax-Bx) < epsilon, rather than Ax==Bx)