Issues with long lineages (DAG) in Spark - apache-spark

We usually use Spark as processing engines for data stored on S3 or HDFS. We use Databricks and EMR platforms.
One of the issues I frequently face is when the task size grows, the job performance is degraded severely. For example, let's say I read data from five tables with different levels of transformation like (filtering, exploding, joins, etc), union subset of data from these transformations, then do further processing (ex. remove some rows based on a criteria that requires windowing functions etc) and then some other processing stages and finally save the final output to a destination s3 path. If we run this job without it takes very long time. However, if we save(stage) temporary intermediate dataframes to S3 and use this saved (on S3) dataframe for the next steps of queries, the job finishes faster. Does anyone have similar experience? Is there a better way to handle this kind of long tasks lineages other than checkpointing?
What is even more strange is for longer lineages spark throws an expected error like column not found, while the same code works if intermediate results are temporarily staged.

Writing the intermediate data by saving the dataframe, or using a checkpoint is the only way to fix it. You're probably running into an issue where the optimizer is taking a really long time to generate the plan. The quickest/most efficient way to fix this is to use localCheckpoint. This materializes a checkpoint locally.
val df = df.localCheckpoint()

Related

Spark SQL output multiple small files

We are having multiple joins involving a large table (about 500gb in size). The output of the joins is stored into multiple small files each of size 800kb-1.5mb. Because of this the job is split into multiple tasks and taking a long time to complete.
We have tried using spark tuning configurations like using broadcast join, changing partition size, changing max records per file etc., But there is no performance improvement with this methods and the issue is also not fixed. Using coalesce makes the job struck at that stage and there is no progress.
Please view this link for Spark UI metrics screenshot, https://i.stack.imgur.com/FfyYy.png
The spark UI confirms your report of too many small files. You will get a file for every spark partition, and you have 33,479 in your final stage where you're writing the output. 33k partitions was probably the right number of partitions for your join but not the right number for your write.
You need to add another stage in your job that comes after your join. That 2nd needs to reduce the number of spark partitions to a reasonable number (that outputs 32MB - ~128MB files)
Something like a coalesce, or repartition. Maybe even a sort :(
You want to target ~350 partitions.
This diagram shows what you want to do manually or automatically (with spark on Databricks)
If you're using Databricks then it's easy as with Delta Lake you can turn on Auto Optimize

Apache Spark: is it possible to get dataset counts in a spark job?

Sometimes some Spark job which runs in our cluster runs too long not because of bad optimization, but because of bad logic of the algorithm. In most cases this is a consequence of some unnecessary joins that produce too many rows. Normally we spot such jobs by looking at Spark execution plan where we can find such joins by looking at "number of output rows: xxx" in blue stage labels.
I want to understand - is it possible to optimize this procedure and somehow automatically notify the programmer that the job has too many rows in some dataset (after execution)?
Maybe we can print this in logs (without manually counting dataset's size in code)?
Maybe after running the job we can get the output of the execution plan somehow and save it for further investigations?
No, it's not an option. Spark will do its best to optimize the query plan, so manual interaction with lower execution level is pretty much limited. However, you can "control" the rows for each jobs/tasks by changing some configurations (like spark.sql.shuffle.partitions or spark.sql.files.maxPartitionBytes), or by repartitioning data, which will cause data to be shuffled and re-distributed nearly equally between executors.

Memory Management Pyspark

1.) I understand that "Spark's operators spills data to disk if it does not fit memory allowing it to run well on any sized data".
If this is true, why do we ever get OOM (Out of Memory) errors?
2.) Increasing the no. of executor cores increases parallelism. Would that also increase the chances of OOM, because the same memory is now divided into smaller parts for each core?
3.) Spark is much more susceptible to OOM because it performs operations in memory as compared to Hive, which repeatedly reads, writes into disk. Is that correct?
There is one angle that you need to consider there. You may get memory leaks if the data is not properly distributed. That means that you need to distribute your data evenly (if possible) on the Tasks so that you reduce shuffling as much as possible and make those Tasks to manage their own data. So if you need to perform a join, if data is distributed randomly, every Task (and therefore executor) will have to:
See what data they have
Send data to other executors (and tasks) to provide the same keys they need
Request the data that is needed by that task to the others
All that data exchange may cause network bottlenecks if you have a large dataset and also will make every Task to hold their data in memory plus whatever has been sent and temporary objects. All of those will blow up memory.
So to prevent that situation you can:
Load the data already repartitioned. By that I mean, if you are loading from a DB, try Spark stride as defined here. Please refer to the partitionColumn, lowerBound, upperBound attributes. That way you will create a number of partitions on the dataframe that will set the data on different tasks based on the criteria you need. If you are going to use a join of two dataframes, try similar approach on them so that partitions are similar (for not to say same) and that will prevent shuffling over network.
When you define partitions, try to make those values as evenly distributed among tasks as possible
The size of each partition should fit on memory. Although there could be spill to disk, that would slow down performance
If you don't have a column that make the data evenly distributed, try to create one that would have n number of different values, depending on the n number of tasks that you have
If you are reading from a csv, that would make it harder to create partitions, but still it's possible. You can either split the data (csv) on multiple files and create multiple dataframes (performing a union after they are loaded) or you can read that big csv and apply a repartition on the column you need. That will create shuffling as well, but it will be done once if you cache the dataframe already repartitioned
Reading from parquet it's possible that you may have multiple files but if they are not evenly distributed (because the previous process that generated didn't do it well) you may end up on OOM errors. To prevent that situation, you can load and apply repartition on the dataframe too
Or another trick valid for csv, parquet files, orc, etc. is to create a Hive table on top of that and run a query from Spark running a distribute by clause on the data, so that you can make Hive to redistribute, instead of Spark
To your question about Hive and Spark, I think you are right up to some point. Depending on the execute engine that Hive uses in your case (map/reduce, Tez, Hive on Spark, LLAP) you can have different behaviours. With map/reduce, as they are mostly disk operations, the chance to have a OOM is much lower than on Spark. Actually from Memory point of view, map/reduce is not that affected because of a skewed data distribution. But (IMHO) your goal should be to find always the best data distribution for the Spark job you are running and that will prevent that problem
Another consideration is if you are testing in a dev environment that doesn't have same data as in a prod environment. I suppose the data distribution should be similar although volumes may differ a lot (I am talking from experience ;)). In that case, when you assign Spark tuning parameters on the spark-submit command, they may be different in prod. So you need to invest some time on finding the best approach on dev and fine tune in prod
Huge majority of OOM in Spark are on the driver, not executors. This is usually a result of running .collect or similar actions on a dataset that won't fit in the driver memory.
Spark does a lot of work under the hood to parallelize the work, when using structured APIs (in contrast to RDDs) the chances of causing OOM on executor are really slim. Some combinations of cluster configuration and jobs can cause memory pressure that will impact performance and cause lots of garbage collection to happen so you need to address it, however spark should be able to handle low memory without explicit exception.
Not really - as above, Spark should be able to recover from memory issues when using structured APIs, however it may need intervention if you see garbage collection and performance impact.

Spark createDataFrame(df.rdd, df.schema) vs checkPoint for breaking lineage

I'm currently using
val df=longLineageCalculation(....)
val newDf=sparkSession.createDataFrame(df.rdd, df.schema)
newDf.join......
In order to save time when calculating plans, however docs say that checkpointing is the suggested way to "cut" lineage. BUT I don't want to pay the price of saving the RDD to disk.
My process is a batch process which is not-so-long and can be restarted without issues, so checkpointing is not benefit for me (I think).
What are the problems which can arise using "my" method? (Docs suggests checkpointing, which is more expensive, instead of this one for breaking lineages and I would like to know the reason)
Only think I can guess is that if some node fails after my "lineage breaking" maybe my process will fail while the checkpointed one would have worked correctly? (what If the DF is cached instead of checkpointed?)
Thanks!
EDIT:
From SMaZ answer, my own knowledge and the article which he provided. Using createDataframe (which is a Dev-API, so use at "my"/your own risk) will keep the lineage in memory (not a problem for me since I don't have memory problems and the lineage is not big).
With this, it looks (not tested 100%) that Spark should be able to rebuild whatever is needed if it fails.
As I'm not using the data in the following executions, I'll go with
cache+createDataframe versus checkpointing (which If i'm not wrong, is
actually cache+saveToHDFS+"createDataFrame").
My process is not that critical (if it crashes) since an user will be always expecting the result and they launch it manually, so if it gives problems, they can relaunch (+Spark will relaunch it) or call me, so I can take some risk anyways, but I'm 99% sure there's no risk :)
Let me start with creating dataframe with below line :
val newDf=sparkSession.createDataFrame(df.rdd, df.schema)
If we take close look into SparkSession class then this method is annotated with #DeveloperApi. To understand what this annotation means please take a look into below lines from DeveloperApi class
A lower-level, unstable API intended for developers.
Developer API's might change or be removed in minor versions of Spark.
So it is not advised to use this method for production solutions, called as Use at your own risk implementation in open source world.
However, Let's dig deeper what happens when we call createDataframe from RDD. It is calling the internalCreateDataFrame private method and creating LogicalRDD.
LogicalRDD is created when:
Dataset is requested to checkpoint
SparkSession is requested to create a DataFrame from an RDD of internal binary rows
So it is nothing but the same as checkpoint operation without saving the dataset physically. It is just creating DataFrame From RDD Of Internal Binary Rows and Schema. This might truncate the lineage in memory but not at the Physical level.
So I believe it's just the overhead of creating another RDDs and can not be used as a replacement of checkpoint.
Now, Checkpoint is the process of truncating lineage graph and saving it to a reliable distributed/local file system.
Why checkpoint?
If computation takes a long time or lineage is too long or Depends too many RDDs
Keeping heavy lineage information comes with the cost of memory.
The checkpoint file will not be deleted automatically even after the Spark application terminated so we can use it for some other process
What are the problems which can arise using "my" method? (Docs
suggests checkpointing, which is more expensive, instead of this one
for breaking lineages and I would like to know the reason)
This article will give detail information on cache and checkpoint. IIUC, your question is more on where we should use the checkpoint. let's discuss some practical scenarios where checkpointing is helpful
Let's take a scenario where we have one dataset on which we want to perform 100 iterative operations and each iteration takes the last iteration result as input(Spark MLlib use cases). Now during this iterative process lineage is going to grow over the period. Here checkpointing dataset at a regular interval(let say every 10 iterations) will assure that in case of any failure we can start the process from last failure point.
Let's take some batch example. Imagine we have a batch which is creating one master dataset with heavy lineage or complex computations. Now after some regular intervals, we are getting some data which should use earlier calculated master dataset. Here if we checkpoint our master dataset then it can be reused for all subsequent processes from different sparkSession.
My process is a batch process which is not-so-long and can be
restarted without issues, so checkpointing is not benefit for me (I
think).
That's correct, If your process is not heavy-computation/Big-lineage then there is no point of checkpointing. Thumb rule is if your dataset is not used multiple time and can be re-build faster than the time is taken and resources used for checkpoint/cache then we should avoid it. It will give more resources to your process.
I think the sparkSession.createDataFrame(df.rdd, df.schema) will impact the fault tolerance property of spark.
But the checkpoint() will save the RDD in hdfs or s3 and hence if failure occurs, it will recover from the last checkpoint data.
And in case of createDataFrame(), it just breaks the lineage graph.

How to do Incremental MapReduce in Apache Spark

In CouchDB and system designs like Incoop, there's a concept called "Incremental MapReduce" where results from previous executions of a MapReduce algorithm are saved and used to skip over sections of input data that haven't been changed.
Say I have 1 million rows divided into 20 partitions. If I run a simple MapReduce over this data, I could cache/store the result of reducing each separate partition, before they're combined and reduced again to produce the final result. If I only change data in the 19th partition then I only need to run the map & reduce steps on the changed section of the data, and then combine the new result with the saved reduce results from the unchanged partitions to get an updated result. Using this sort of catching I'd be able to skip almost 95% of the work for re-running a MapReduce job on this hypothetical dataset.
Is there any good way to apply this pattern to Spark? I know I could write my own tool for splitting up input data into partitions, checking if I've already processed those partitions before, loading them from a cache if I have, and then running the final reduce to join all the partitions together. However, I suspect that there's an easier way to approach this.
I've experimented with checkpointing in Spark Streaming, and that is able to store results between restarts, which is almost what I'm looking for, but I want to do this outside of a streaming job.
RDD caching/persisting/checkpointing almost looks like something I could build off of - it makes it easy to keep intermediate computations around and reference them later, but I think cached RDDs are always removed once the SparkContext is stopped, even if they're persisted to disk. So caching wouldn't work for storing results between restarts. Also, I'm not sure if/how checkpointed RDDs are supposed to be loaded when a new SparkContext is started... They seem to be stored under a UUID in the checkpoint directory that's specific to a single instance of the SparkContext.
Both use cases suggested by the article (incremental logs processing and incremental query processing) can be generally solved by Spark Streaming.
The idea is that you have incremental updates coming in using DStreams abstraction. Then, you can process new data, and join it with previous calculation either using time window based processing or using arbitrary stateful operations as part of Structured Stream Processing. Results of the calculation can be later dumped to some sort of external sink like database or file system, or they can be exposed as an SQL table.
If you're not building an online data processing system, regular Spark can be used as well. It's just a matter of how incremental updates get into the process, and how intermediate state is saved. For example, incremental updates can appear under some path on a distributed file system, while intermediate state containing previous computation joined with new data computation can be dumped, again, to the same file system.

Resources