I'm trying to find the min date in a column 'dateclosed' in a pyspark dataframe. I then want to add a column to my original dataframe, so that every record would have the minimum date 'Open_Date'. This really seems like it shouldn't be that hard, but I keep getting errors. I've also tried using "join" and creating a field with only one value in both dataframes and trying to join them on that, but again I just get errors. Does anyone have a solution?
Code:
tst2_df=tst_df[['dateclosed']].agg({'dateclosed':'min'})\
.withColumnRenamed('min(dateclosed)','Open_Date')
tst_df.withColumn('Open_Date',lit(tst2_df[['Open_Date']].collect()[0])).show()
errors:
An error occurred while calling z:org.apache.spark.sql.functions.lit.
: java.lang.RuntimeException: Unsupported literal type class java.util.ArrayList [2017-01-01]
at org.apache.spark.sql.catalyst.expressions.Literal$.apply(literals.scala:78)
at org.apache.spark.sql.catalyst.expressions.Literal$$anonfun$create$2.apply(literals.scala:164)
at org.apache.spark.sql.catalyst.expressions.Literal$$anonfun$create$2.apply(literals.scala:164)
at scala.util.Try.getOrElse(Try.scala:79)
at org.apache.spark.sql.catalyst.expressions.Literal$.create(literals.scala:163)
at org.apache.spark.sql.functions$.typedLit(functions.scala:127)
at org.apache.spark.sql.functions$.lit(functions.scala:110)
at org.apache.spark.sql.functions.lit(functions.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Traceback (most recent call last):
File "/mnt/yarn/usercache/livy/appcache/application_1571940153295_0002/container_1571940153295_0002_01_000001/pyspark.zip/pyspark/sql/functions.py", line 44, in _
jc = getattr(sc._jvm.functions, name)(col._jc if isinstance(col, Column) else col)
File "/mnt/yarn/usercache/livy/appcache/application_1571940153295_0002/container_1571940153295_0002_01_000001/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/mnt/yarn/usercache/livy/appcache/application_1571940153295_0002/container_1571940153295_0002_01_000001/pyspark.zip/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/mnt/yarn/usercache/livy/appcache/application_1571940153295_0002/container_1571940153295_0002_01_000001/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.sql.functions.lit.
: java.lang.RuntimeException: Unsupported literal type class java.util.ArrayList [2017-01-01]
at org.apache.spark.sql.catalyst.expressions.Literal$.apply(literals.scala:78)
at org.apache.spark.sql.catalyst.expressions.Literal$$anonfun$create$2.apply(literals.scala:164)
at org.apache.spark.sql.catalyst.expressions.Literal$$anonfun$create$2.apply(literals.scala:164)
at scala.util.Try.getOrElse(Try.scala:79)
at org.apache.spark.sql.catalyst.expressions.Literal$.create(literals.scala:163)
at org.apache.spark.sql.functions$.typedLit(functions.scala:127)
at org.apache.spark.sql.functions$.lit(functions.scala:110)
at org.apache.spark.sql.functions.lit(functions.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Update:
This hack worked, thanks for the tip Pault
tst_df2=tst_df.withColumn('BS',lit('a'))
w = Window.partitionBy('BS')
tst_df2.select('BS','dateclosed', min('dateclosed').over(w).alias('n')).show()
tst_df2=tst_df.withColumn('BS',lit('a'))
w = Window.partitionBy('BS')
tst_df2.select('BS','dateclosed', min('dateclosed').over(w).alias('n')).show()
Related
I was able to read Cassandra tables. I created Cassandra table according to spark dataframe schema. But when I tried to write spark dataframe to Cassandra table. I got following error. Environment: pyspark 3.0.1 local shell, Cassandra 3.11.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/spark/python/pyspark/sql/readwriter.py", line 825, in save
self._jwrite.save()
File "/opt/spark/python/lib/py4j-0.10.9-src.zip/py4j/java_gateway.py", line 1305, in __call__
File "/opt/spark/python/pyspark/sql/utils.py", line 128, in deco
return f(*a, **kw)
File "/opt/spark/python/lib/py4j-0.10.9-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o62.save.
: com.datastax.spark.connector.datasource.CassandraCatalogException: Attempting to write to C* Table but missing
primary key columns: [logicalref]
at com.datastax.spark.connector.datasource.CassandraWriteBuilder.<init>(CassandraWriteBuilder.scala:44)
at com.datastax.spark.connector.datasource.CassandraTable.newWriteBuilder(CassandraTable.scala:69)
at org.apache.spark.sql.execution.datasources.v2.BatchWriteHelper.newWriteBuilder(WriteToDataSourceV2Exec.scala:346)
at org.apache.spark.sql.execution.datasources.v2.BatchWriteHelper.newWriteBuilder$(WriteToDataSourceV2Exec.scala:341)
at org.apache.spark.sql.execution.datasources.v2.AppendDataExec.newWriteBuilder(WriteToDataSourceV2Exec.scala:253)
at org.apache.spark.sql.execution.datasources.v2.AppendDataExec.run(WriteToDataSourceV2Exec.scala:259)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result$lzycompute(V2CommandExec.scala:39)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result(V2CommandExec.scala:39)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.doExecute(V2CommandExec.scala:54)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:175)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:213)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:210)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:171)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:122)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:121)
at org.apache.spark.sql.DataFrameWriter.$anonfun$runCommand$1(DataFrameWriter.scala:963)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:100)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:87)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:963)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:354)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
First I read emty cassandra table. I got columns. I select these columns and assigned another dataframe like
df = spark.read.format("org.apache.spark.sql.cassandra")...
df2 = df.select(*df.columns)
Then I was able to write
df2.write.format("org.apache.spark.sql.cassandra")....
I can read local csv file in Python command line window by using spark.read.csv('csv path') ,but when I change the file to a distributed file, error occurs:
WARN FileStreamSink: Error while looking for metadata directory.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.5/dist-packages/pyspark/sql/readwriter.py", line 476, in csv
return self._df(self._jreader.csv(self._spark._sc._jvm.PythonUtils.toSeq(path)))
File "/usr/local/lib/python3.5/dist-packages/py4j/java_gateway.py", line 1257, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/usr/local/lib/python3.5/dist-packages/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/usr/local/lib/python3.5/dist-packages/py4j/protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o40.csv.
: java.io.IOException: Incomplete HDFS URI, no host: hdfs:///agriculture/historyClimate/59855.csv
at org.apache.hadoop.hdfs.DistributedFileSystem.initialize(DistributedFileSystem.java:143)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2669)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:94)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2703)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2685)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:373)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:295)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary$1.apply(DataSource.scala:547)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary$1.apply(DataSource.scala:545)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.immutable.List.foreach(List.scala:392)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at scala.collection.immutable.List.flatMap(List.scala:355)
at org.apache.spark.sql.execution.datasources.DataSource.org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary(DataSource.scala:545)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:359)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:223)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:211)
at org.apache.spark.sql.DataFrameReader.csv(DataFrameReader.scala:618)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
The spark version is 2.4.0, python version is 3.5, Hadoop is 2.6.0-cdh5.14.4.
The stack trace tells exactly what went wrong:
An error occurred while calling o40.csv. : java.io.IOException: Incomplete HDFS URI, no host: hdfs:///agriculture/historyClimate/59855.csv
You've provided incorrect HDFS URI of the file. HDFS URI should look like:
hdfs://<host>:<port>/historyClimate/59855.csv
You can test whether URI is correct by using hadoop client:
hadoop fs -ls hdfs://<host>:<port>/historyClimate/59855.csv
I am trying to read a file via textFile() method. However, when I try take() method after it, StringIndexOutOfBoundsException Exception raises. The file indeed exists.
schema_string = sc.textFile(schema_location).take(1)[0]
The error message I receive is as follows.
File "/home/spark-current/python/lib/pyspark.zip/pyspark/rdd.py", line 1376, in first
File "/home/spark-current/python/lib/pyspark.zip/pyspark/rdd.py", line 1325, in take
File "/home/spark-current/python/lib/pyspark.zip/pyspark/rdd.py", line 389, in getNumPartitions
File "/home/spark-current/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
File "/home/spark-current/python/lib/pyspark.zip/pyspark/sql/utils.py", line 63, in deco
File "/home/spark-current/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o136.partitions.
: org.apache.hadoop.fs.azure.AzureException: java.lang.StringIndexOutOfBoundsException: String index out of range: 7
at org.apache.hadoop.fs.azure.AzureNativeFileSystemStore.createAzureStorageSession(AzureNativeFileSystemStore.java:942)
at org.apache.hadoop.fs.azure.AzureNativeFileSystemStore.initialize(AzureNativeFileSystemStore.java:439)
at org.apache.hadoop.fs.azure.NativeAzureFileSystem.initialize(NativeAzureFileSystem.java:1174)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2812)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:100)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2849)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2831)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:389)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:356)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:265)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:236)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:322)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:200)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:46)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)
at org.apache.spark.api.java.JavaRDDLike$class.partitions(JavaRDDLike.scala:61)
at org.apache.spark.api.java.AbstractJavaRDDLike.partitions(JavaRDDLike.scala:45)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.StringIndexOutOfBoundsException: String index out of range: 7
I'm working on CentOS 7 with Spark 2.3.0
I linked PySpark with jupyter but I get an error when I try to read an xml file
df=pyspark.SQLContext(sc).read.format('com.databricks.spark.xml').options(rowTag='books').load('xm.xml')
Py4JJavaError Traceback (most recent call last)
<ipython-input-13-c0ea09e4b676> in <module>()
----> 1 df = pyspark.SQLContext(sc).read.format('com.databricks.spark.xml').options(rowTag='books').load('xm.xml')
/usr/lib/spark/python/pyspark/sql/readwriter.pyc in load(self, path, format,
schema, **options)
164 self.options(**options)
165 if isinstance(path, basestring):
--> 166 return self._df(self._jreader.load(path))
167 elif path is not None:
168 if type(path) != list:
...
Py4JJavaError: An error occurred while calling o61.load.
: java.lang.ClassNotFoundException: Failed to find data source: com.databricks.spark.xml. Please find packages at http://spark.apache.org/third-party-projects.html
at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:635)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:190)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:174)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.ClassNotFoundException: <br>
How can I add com.databriks to work with me?
I have written the following to to connect to a Cassandra database from PyCharm.
from pyspark import SparkContext, SparkConf
from pyspark.sql import SQLContext
import os
os.environ['SPARK_HOME']="C:\Users\MyEnv\Documents\spark-1.6.1-bin-hadoop2.4"
conf = SparkConf()
conf.setAppName("Spark Cassandra")
conf.set("spark.cassandra.connection.host","xxx.xxx.xxx.xxx").set("spark.cassandra.connection.port","9000")
sc = SparkContext(conf=conf)
sql = SQLContext(sc)
print("it means that ")
dataFrame = sql.read.format("org.apache.spark.sql.cassandra").options(table="table_name", keyspace="MyDb").load()
dataFrame.printSchema()
The print function is executed but the line
sql.read.format("org.apache.spark.sql.cassandra")
.options(table="table_name", keyspace="MyDb").load()
got the following errors:
Traceback (most recent call last):
File "C:/Users/MyEnv/PycharmProjects/Big_Spark/Cassandra_connector2.py", line 16, in <module>
dataFrame = sql.read.format("org.apache.spark.sql.cassandra").options(table="tmf_pm1", keyspace="framework20").load()
File "C:\Users\MyEnv\Documents\spark-1.6.1-bin-hadoop2.4\python\pyspark\sql\readwriter.py", line 139, in load
return self._df(self._jreader.load())
File "C:\Users\MyEnv\AppData\Local\Continuum\Anaconda\lib\site-packages\py4j\java_gateway.py", line 1026, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "C:\Users\MyEnv\Documents\spark-1.6.1-bin-hadoop2.4\python\pyspark\sql\utils.py", line 45, in deco
return f(*a, **kw)
File "C:\Users\MyEnv\AppData\Local\Continuum\Anaconda\lib\site- packages\py4j\protocol.py", line 316, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o26.load.
: java.lang.ClassNotFoundException: Failed to find data source: org.apache.spark.sql.cassandra. Please find packages at http://spark-packages.org
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.lookupDataSource(ResolvedDataSource.scala:77)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:102)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:119)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:209)
at java.lang.Thread.run(Unknown Source)
Caused by: java.lang.ClassNotFoundException: org.apache.spark.sql.cassandra.DefaultSource
at java.net.URLClassLoader$1.run(Unknown Source)
at java.net.URLClassLoader$1.run(Unknown Source)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(Unknown Source)
at java.lang.ClassLoader.loadClass(Unknown Source)
at java.lang.ClassLoader.loadClass(Unknown Source)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$$anonfun$4$$anonfun$apply$1.apply(ResolvedDataSource.scala:62)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$$anonfun$4$$anonfun$apply$1.apply(ResolvedDataSource.scala:62)
at scala.util.Try$.apply(Try.scala:161)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$$anonfun$4.apply(ResolvedDataSource.scala:62)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$$anonfun$4.apply(ResolvedDataSource.scala:62)
at scala.util.Try.orElse(Try.scala:82)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.lookupDataSource(ResolvedDataSource.scala:62)
... 13 more
16/06/21 13:31:43 INFO SparkContext: Invoking stop() from shutdown hook
What could be the problem?
Add:
spark.jars.packages com.datastax.spark:spark-cassandra-connector_2.10:1.6.0
To:
SPARK_HOME\conf\spark-defaults.conf